Optimal. Leaf size=29 \[ \frac {\left (x+x \left (3+\frac {1}{4} e^4 x \left (\log (3)+\log \left (\frac {3}{x}\right )\right )\right )\right )^2}{x^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.08, antiderivative size = 140, normalized size of antiderivative = 4.83, number of steps used = 7, number of rules used = 6, integrand size = 74, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {12, 6, 2313, 9, 2305, 2304} \begin {gather*} \frac {e^8 x^2}{32}+\frac {1}{16} e^8 x^2 \log ^2\left (\frac {3}{x}\right )+\frac {1}{16} e^8 x^2 \log ^2(3)+\frac {1}{16} e^8 x^2 \log \left (\frac {3}{x}\right )+\frac {1}{16} \left (32 e^4 x-e^8 x^2 (1-\log (9))\right ) \log \left (\frac {3}{x}\right )-2 e^4 x-\frac {\left (32-e^4 x (1-\log (9))\right )^2}{32 (1-\log (9))}-\frac {1}{16} \left (16-e^4 x\right )^2 \log (3) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 9
Rule 12
Rule 2304
Rule 2305
Rule 2313
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \left (-16 e^4+\left (16 e^4-e^8 x\right ) \log (3)+e^8 x \log ^2(3)+\left (16 e^4-e^8 x+2 e^8 x \log (3)\right ) \log \left (\frac {3}{x}\right )+e^8 x \log ^2\left (\frac {3}{x}\right )\right ) \, dx\\ &=-2 e^4 x-\frac {1}{16} \left (16-e^4 x\right )^2 \log (3)+\frac {1}{16} e^8 x^2 \log ^2(3)+\frac {1}{8} \int \left (16 e^4-e^8 x+2 e^8 x \log (3)\right ) \log \left (\frac {3}{x}\right ) \, dx+\frac {1}{8} e^8 \int x \log ^2\left (\frac {3}{x}\right ) \, dx\\ &=-2 e^4 x-\frac {1}{16} \left (16-e^4 x\right )^2 \log (3)+\frac {1}{16} e^8 x^2 \log ^2(3)+\frac {1}{16} e^8 x^2 \log ^2\left (\frac {3}{x}\right )+\frac {1}{8} \int \left (16 e^4+e^8 x (-1+2 \log (3))\right ) \log \left (\frac {3}{x}\right ) \, dx+\frac {1}{8} e^8 \int x \log \left (\frac {3}{x}\right ) \, dx\\ &=-2 e^4 x+\frac {e^8 x^2}{32}-\frac {1}{16} \left (16-e^4 x\right )^2 \log (3)+\frac {1}{16} e^8 x^2 \log ^2(3)+\frac {1}{16} e^8 x^2 \log \left (\frac {3}{x}\right )+\frac {1}{16} \left (32 e^4 x-e^8 x^2 (1-\log (9))\right ) \log \left (\frac {3}{x}\right )+\frac {1}{16} e^8 x^2 \log ^2\left (\frac {3}{x}\right )+\frac {1}{8} \int \frac {1}{2} e^4 \left (32-e^4 x (1-\log (9))\right ) \, dx\\ &=-2 e^4 x+\frac {e^8 x^2}{32}-\frac {1}{16} \left (16-e^4 x\right )^2 \log (3)+\frac {1}{16} e^8 x^2 \log ^2(3)-\frac {\left (32-e^4 x (1-\log (9))\right )^2}{32 (1-\log (9))}+\frac {1}{16} e^8 x^2 \log \left (\frac {3}{x}\right )+\frac {1}{16} \left (32 e^4 x-e^8 x^2 (1-\log (9))\right ) \log \left (\frac {3}{x}\right )+\frac {1}{16} e^8 x^2 \log ^2\left (\frac {3}{x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.10, size = 76, normalized size = 2.62 \begin {gather*} \frac {1}{32} e^4 x \left (64 \log (3)+e^4 x \log (3)-e^4 x \log (9)+e^4 x \log ^2(9)+\left (64+e^4 x (1+\log (81))\right ) \log \left (\frac {3}{x}\right )+e^4 x \log \left (\frac {1}{x}\right ) \left (-1+\log (9)+2 \log \left (\frac {3}{x}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 56, normalized size = 1.93 \begin {gather*} \frac {1}{16} \, x^{2} e^{8} \log \relax (3)^{2} + \frac {1}{16} \, x^{2} e^{8} \log \left (\frac {3}{x}\right )^{2} + 2 \, x e^{4} \log \relax (3) + \frac {1}{8} \, {\left (x^{2} e^{8} \log \relax (3) + 16 \, x e^{4}\right )} \log \left (\frac {3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 118, normalized size = 4.07 \begin {gather*} \frac {1}{16} \, x^{2} e^{8} \log \relax (3)^{2} + \frac {1}{32} \, {\left (2 \, e^{8} \log \relax (3) + \frac {64 \, e^{4}}{x} - e^{8}\right )} x^{2} + \frac {1}{32} \, {\left (2 \, x^{2} \log \left (\frac {3}{x}\right )^{2} + 2 \, x^{2} \log \left (\frac {3}{x}\right ) + x^{2}\right )} e^{8} - 2 \, x e^{4} - \frac {1}{16} \, {\left (x^{2} e^{8} - 32 \, x e^{4}\right )} \log \relax (3) + \frac {1}{16} \, {\left (2 \, x^{2} e^{8} \log \relax (3) - x^{2} e^{8} + 32 \, x e^{4}\right )} \log \left (\frac {3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 61, normalized size = 2.10
method | result | size |
risch | \(2 \,{\mathrm e}^{4} x \ln \relax (3)+\frac {{\mathrm e}^{8} \ln \relax (3) x^{2} \ln \left (\frac {3}{x}\right )}{8}+2 \,{\mathrm e}^{4} \ln \left (\frac {3}{x}\right ) x +\frac {{\mathrm e}^{8} \ln \relax (3)^{2} x^{2}}{16}+\frac {{\mathrm e}^{8} x^{2} \ln \left (\frac {3}{x}\right )^{2}}{16}\) | \(61\) |
default | \(2 \,{\mathrm e}^{4} x \ln \relax (3)+\frac {{\mathrm e}^{8} \ln \relax (3) x^{2} \ln \left (\frac {3}{x}\right )}{8}+2 \,{\mathrm e}^{4} \ln \left (\frac {3}{x}\right ) x +\frac {{\mathrm e}^{8} \ln \relax (3)^{2} x^{2}}{16}+\frac {{\mathrm e}^{8} x^{2} \ln \left (\frac {3}{x}\right )^{2}}{16}\) | \(67\) |
norman | \(2 \,{\mathrm e}^{4} x \ln \relax (3)+\frac {{\mathrm e}^{8} \ln \relax (3) x^{2} \ln \left (\frac {3}{x}\right )}{8}+2 \,{\mathrm e}^{4} \ln \left (\frac {3}{x}\right ) x +\frac {{\mathrm e}^{8} \ln \relax (3)^{2} x^{2}}{16}+\frac {{\mathrm e}^{8} x^{2} \ln \left (\frac {3}{x}\right )^{2}}{16}\) | \(67\) |
derivativedivides | \(\frac {{\mathrm e}^{8} \ln \relax (3)^{2} x^{2}}{16}-\frac {9 \,{\mathrm e}^{8} \ln \relax (3) \left (-\frac {x^{2} \ln \left (\frac {3}{x}\right )}{18}-\frac {x^{2}}{36}\right )}{4}-\frac {9 \,{\mathrm e}^{8} \left (-\frac {x^{2} \ln \left (\frac {3}{x}\right )^{2}}{18}-\frac {x^{2} \ln \left (\frac {3}{x}\right )}{18}-\frac {x^{2}}{36}\right )}{8}-\frac {{\mathrm e}^{8} \ln \relax (3) x^{2}}{16}+2 \,{\mathrm e}^{4} x \ln \relax (3)+\frac {9 \,{\mathrm e}^{8} \left (-\frac {x^{2} \ln \left (\frac {3}{x}\right )}{18}-\frac {x^{2}}{36}\right )}{8}-6 \,{\mathrm e}^{4} \left (-\frac {x \ln \left (\frac {3}{x}\right )}{3}-\frac {x}{3}\right )-2 x \,{\mathrm e}^{4}\) | \(139\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 108, normalized size = 3.72 \begin {gather*} \frac {1}{16} \, x^{2} e^{8} \log \relax (3)^{2} + \frac {1}{16} \, x^{2} e^{8} \log \left (\frac {3}{x}\right )^{2} + \frac {1}{32} \, {\left (2 \, e^{8} \log \relax (3) - e^{8}\right )} x^{2} + \frac {1}{32} \, {\left (2 \, x^{2} \log \left (\frac {3}{x}\right ) + x^{2}\right )} e^{8} - \frac {1}{16} \, {\left (x^{2} e^{8} - 32 \, x e^{4}\right )} \log \relax (3) + \frac {1}{16} \, {\left (2 \, x^{2} e^{8} \log \relax (3) - x^{2} e^{8} + 32 \, x e^{4}\right )} \log \left (\frac {3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.24, size = 31, normalized size = 1.07 \begin {gather*} \frac {x\,{\mathrm {e}}^4\,\left (\ln \left (\frac {1}{x}\right )+2\,\ln \relax (3)\right )\,\left (x\,\ln \left (\frac {1}{x}\right )\,{\mathrm {e}}^4+2\,x\,{\mathrm {e}}^4\,\ln \relax (3)+32\right )}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 61, normalized size = 2.10 \begin {gather*} \frac {x^{2} e^{8} \log {\left (\frac {3}{x} \right )}^{2}}{16} + \frac {x^{2} e^{8} \log {\relax (3 )}^{2}}{16} + 2 x e^{4} \log {\relax (3 )} + \left (\frac {x^{2} e^{8} \log {\relax (3 )}}{8} + 2 x e^{4}\right ) \log {\left (\frac {3}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________