Optimal. Leaf size=27 \[ \left (5+e^{-x+x^2}\right ) x+(10-x-\log (4))^2+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 39, normalized size of antiderivative = 1.44, number of steps used = 6, number of rules used = 3, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.073, Rules used = {6, 14, 2288} \begin {gather*} x^2+\frac {e^{x^2-x} \left (x-2 x^2\right )}{1-2 x}-x (15-\log (16))+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1+2 x^2+e^{-x+x^2} \left (x-x^2+2 x^3\right )+x (-15+2 \log (4))}{x} \, dx\\ &=\int \left (e^{-x+x^2} \left (1-x+2 x^2\right )+\frac {1+2 x^2-x (15-\log (16))}{x}\right ) \, dx\\ &=\int e^{-x+x^2} \left (1-x+2 x^2\right ) \, dx+\int \frac {1+2 x^2-x (15-\log (16))}{x} \, dx\\ &=\frac {e^{-x+x^2} \left (x-2 x^2\right )}{1-2 x}+\int \left (-15+\frac {1}{x}+2 x+\log (16)\right ) \, dx\\ &=x^2+\frac {e^{-x+x^2} \left (x-2 x^2\right )}{1-2 x}-x (15-\log (16))+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 17, normalized size = 0.63 \begin {gather*} x \left (-15+e^{(-1+x) x}+x+\log (16)\right )+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 24, normalized size = 0.89 \begin {gather*} x^{2} + x e^{\left (x^{2} - x\right )} + 4 \, x \log \relax (2) - 15 \, x + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 24, normalized size = 0.89 \begin {gather*} x^{2} + x e^{\left (x^{2} - x\right )} + 4 \, x \log \relax (2) - 15 \, x + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 23, normalized size = 0.85
method | result | size |
risch | \(-15 x +\ln \relax (x )+x^{2}+x \,{\mathrm e}^{x \left (x -1\right )}+4 x \ln \relax (2)\) | \(23\) |
default | \(-15 x +\ln \relax (x )+x^{2}+x \,{\mathrm e}^{x^{2}-x}+4 x \ln \relax (2)\) | \(25\) |
norman | \(x^{2}+x \,{\mathrm e}^{x^{2}-x}+\left (4 \ln \relax (2)-15\right ) x +\ln \relax (x )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.41, size = 165, normalized size = 6.11 \begin {gather*} -\frac {1}{2} i \, \sqrt {\pi } \operatorname {erf}\left (i \, x - \frac {1}{2} i\right ) e^{\left (-\frac {1}{4}\right )} + x^{2} - \frac {1}{4} \, {\left (\frac {4 \, {\left (2 \, x - 1\right )}^{3} \Gamma \left (\frac {3}{2}, -\frac {1}{4} \, {\left (2 \, x - 1\right )}^{2}\right )}{\left (-{\left (2 \, x - 1\right )}^{2}\right )^{\frac {3}{2}}} - \frac {\sqrt {\pi } {\left (2 \, x - 1\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-{\left (2 \, x - 1\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (2 \, x - 1\right )}^{2}}} - 4 \, e^{\left (\frac {1}{4} \, {\left (2 \, x - 1\right )}^{2}\right )}\right )} e^{\left (-\frac {1}{4}\right )} - \frac {1}{4} \, {\left (\frac {\sqrt {\pi } {\left (2 \, x - 1\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-{\left (2 \, x - 1\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (2 \, x - 1\right )}^{2}}} + 2 \, e^{\left (\frac {1}{4} \, {\left (2 \, x - 1\right )}^{2}\right )}\right )} e^{\left (-\frac {1}{4}\right )} + 4 \, x \log \relax (2) - 15 \, x + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 22, normalized size = 0.81 \begin {gather*} \ln \relax (x)+x\,{\mathrm {e}}^{x^2-x}+x\,\left (\ln \left (16\right )-15\right )+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 22, normalized size = 0.81 \begin {gather*} x^{2} + x e^{x^{2} - x} + x \left (-15 + 4 \log {\relax (2 )}\right ) + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________