Optimal. Leaf size=28 \[ \frac {3 \left (x-(x-x \log (5+x))^2\right )}{-2+e^{2-x}} \]
________________________________________________________________________________________
Rubi [F] time = 48.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-30+54 x+e^{2-x} \left (15-12 x-12 x^2-3 x^3\right )+\left (-120 x-12 x^2+e^{2-x} \left (60 x+36 x^2+6 x^3\right )\right ) \log (5+x)+\left (60 x+12 x^2+e^{2-x} \left (-30 x-21 x^2-3 x^3\right )\right ) \log ^2(5+x)}{20+e^{2-x} (-20-4 x)+4 x+e^{4-2 x} (5+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x} \left (-30+54 x+e^{2-x} \left (15-12 x-12 x^2-3 x^3\right )+\left (-120 x-12 x^2+e^{2-x} \left (60 x+36 x^2+6 x^3\right )\right ) \log (5+x)+\left (60 x+12 x^2+e^{2-x} \left (-30 x-21 x^2-3 x^3\right )\right ) \log ^2(5+x)\right )}{\left (e^2-2 e^x\right )^2 (5+x)} \, dx\\ &=\int \left (-\frac {6 e^{2 x} x \left (-1+x-2 x \log (5+x)+x \log ^2(5+x)\right )}{\left (-e^2+2 e^x\right )^2}-\frac {3 e^{-2+x} \left (-5+4 x+4 x^2+x^3-20 x \log (5+x)-12 x^2 \log (5+x)-2 x^3 \log (5+x)+10 x \log ^2(5+x)+7 x^2 \log ^2(5+x)+x^3 \log ^2(5+x)\right )}{5+x}-\frac {6 e^{-2+2 x} \left (-5+4 x+4 x^2+x^3-20 x \log (5+x)-12 x^2 \log (5+x)-2 x^3 \log (5+x)+10 x \log ^2(5+x)+7 x^2 \log ^2(5+x)+x^3 \log ^2(5+x)\right )}{\left (e^2-2 e^x\right ) (5+x)}\right ) \, dx\\ &=-\left (3 \int \frac {e^{-2+x} \left (-5+4 x+4 x^2+x^3-20 x \log (5+x)-12 x^2 \log (5+x)-2 x^3 \log (5+x)+10 x \log ^2(5+x)+7 x^2 \log ^2(5+x)+x^3 \log ^2(5+x)\right )}{5+x} \, dx\right )-6 \int \frac {e^{2 x} x \left (-1+x-2 x \log (5+x)+x \log ^2(5+x)\right )}{\left (-e^2+2 e^x\right )^2} \, dx-6 \int \frac {e^{-2+2 x} \left (-5+4 x+4 x^2+x^3-20 x \log (5+x)-12 x^2 \log (5+x)-2 x^3 \log (5+x)+10 x \log ^2(5+x)+7 x^2 \log ^2(5+x)+x^3 \log ^2(5+x)\right )}{\left (e^2-2 e^x\right ) (5+x)} \, dx\\ &=-\left (3 \int \frac {e^{-2+x} \left (-5+4 x+4 x^2+x^3-2 x \left (10+6 x+x^2\right ) \log (5+x)+x \left (10+7 x+x^2\right ) \log ^2(5+x)\right )}{5+x} \, dx\right )-6 \int \left (-\frac {e^{2 x} x}{\left (-e^2+2 e^x\right )^2}+\frac {e^{2 x} x^2}{\left (-e^2+2 e^x\right )^2}-\frac {2 e^{2 x} x^2 \log (5+x)}{\left (-e^2+2 e^x\right )^2}+\frac {e^{2 x} x^2 \log ^2(5+x)}{\left (-e^2+2 e^x\right )^2}\right ) \, dx-6 \int \frac {e^{-2+2 x} \left (-5+4 x+4 x^2+x^3-2 x \left (10+6 x+x^2\right ) \log (5+x)+x \left (10+7 x+x^2\right ) \log ^2(5+x)\right )}{\left (e^2-2 e^x\right ) (5+x)} \, dx\\ &=-\left (3 \int \left (\frac {e^{-2+x} \left (-5+4 x+4 x^2+x^3\right )}{5+x}-\frac {2 e^{-2+x} x \left (10+6 x+x^2\right ) \log (5+x)}{5+x}+e^{-2+x} x (2+x) \log ^2(5+x)\right ) \, dx\right )+6 \int \frac {e^{2 x} x}{\left (-e^2+2 e^x\right )^2} \, dx-6 \int \frac {e^{2 x} x^2}{\left (-e^2+2 e^x\right )^2} \, dx-6 \int \frac {e^{2 x} x^2 \log ^2(5+x)}{\left (-e^2+2 e^x\right )^2} \, dx-6 \int \left (\frac {5 e^{-2+2 x}}{\left (-e^2+2 e^x\right ) (5+x)}-\frac {4 e^{-2+2 x} x}{\left (-e^2+2 e^x\right ) (5+x)}-\frac {4 e^{-2+2 x} x^2}{\left (-e^2+2 e^x\right ) (5+x)}-\frac {e^{-2+2 x} x^3}{\left (-e^2+2 e^x\right ) (5+x)}+\frac {20 e^{-2+2 x} x \log (5+x)}{\left (-e^2+2 e^x\right ) (5+x)}+\frac {12 e^{-2+2 x} x^2 \log (5+x)}{\left (-e^2+2 e^x\right ) (5+x)}+\frac {2 e^{-2+2 x} x^3 \log (5+x)}{\left (-e^2+2 e^x\right ) (5+x)}-\frac {10 e^{-2+2 x} x \log ^2(5+x)}{\left (-e^2+2 e^x\right ) (5+x)}-\frac {7 e^{-2+2 x} x^2 \log ^2(5+x)}{\left (-e^2+2 e^x\right ) (5+x)}-\frac {e^{-2+2 x} x^3 \log ^2(5+x)}{\left (-e^2+2 e^x\right ) (5+x)}\right ) \, dx+12 \int \frac {e^{2 x} x^2 \log (5+x)}{\left (-e^2+2 e^x\right )^2} \, dx\\ &=-\left (3 \int \frac {e^{-2+x} \left (-5+4 x+4 x^2+x^3\right )}{5+x} \, dx\right )-3 \int e^{-2+x} x (2+x) \log ^2(5+x) \, dx+6 \int \frac {e^{-2+2 x} x^3}{\left (-e^2+2 e^x\right ) (5+x)} \, dx+6 \int \left (\frac {x}{4}+\frac {e^4 x}{4 \left (e^2-2 e^x\right )^2}-\frac {e^2 x}{2 \left (e^2-2 e^x\right )}\right ) \, dx-6 \int \left (\frac {x^2}{4}+\frac {e^4 x^2}{4 \left (e^2-2 e^x\right )^2}-\frac {e^2 x^2}{2 \left (e^2-2 e^x\right )}\right ) \, dx+6 \int \frac {e^{-2+x} x \left (10+6 x+x^2\right ) \log (5+x)}{5+x} \, dx-6 \int \frac {e^{2 x} x^2 \log ^2(5+x)}{\left (-e^2+2 e^x\right )^2} \, dx+6 \int \frac {e^{-2+2 x} x^3 \log ^2(5+x)}{\left (-e^2+2 e^x\right ) (5+x)} \, dx+12 \int \frac {e^{2 x} x^2 \log (5+x)}{\left (-e^2+2 e^x\right )^2} \, dx-12 \int \frac {e^{-2+2 x} x^3 \log (5+x)}{\left (-e^2+2 e^x\right ) (5+x)} \, dx+24 \int \frac {e^{-2+2 x} x}{\left (-e^2+2 e^x\right ) (5+x)} \, dx+24 \int \frac {e^{-2+2 x} x^2}{\left (-e^2+2 e^x\right ) (5+x)} \, dx-30 \int \frac {e^{-2+2 x}}{\left (-e^2+2 e^x\right ) (5+x)} \, dx+42 \int \frac {e^{-2+2 x} x^2 \log ^2(5+x)}{\left (-e^2+2 e^x\right ) (5+x)} \, dx+60 \int \frac {e^{-2+2 x} x \log ^2(5+x)}{\left (-e^2+2 e^x\right ) (5+x)} \, dx-72 \int \frac {e^{-2+2 x} x^2 \log (5+x)}{\left (-e^2+2 e^x\right ) (5+x)} \, dx-120 \int \frac {e^{-2+2 x} x \log (5+x)}{\left (-e^2+2 e^x\right ) (5+x)} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 37, normalized size = 1.32 \begin {gather*} \frac {3 e^x x \left (-1+x-2 x \log (5+x)+x \log ^2(5+x)\right )}{-e^2+2 e^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.47, size = 38, normalized size = 1.36 \begin {gather*} -\frac {3 \, {\left (x^{2} \log \left (x + 5\right )^{2} - 2 \, x^{2} \log \left (x + 5\right ) + x^{2} - x\right )}}{e^{\left (-x + 2\right )} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.49, size = 46, normalized size = 1.64 \begin {gather*} -\frac {3 \, {\left (x^{2} e^{x} \log \left (x + 5\right )^{2} - 2 \, x^{2} e^{x} \log \left (x + 5\right ) + x^{2} e^{x} - x e^{x}\right )}}{e^{2} - 2 \, e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 58, normalized size = 2.07
method | result | size |
risch | \(-\frac {3 x^{2} \ln \left (5+x \right )^{2}}{{\mathrm e}^{2-x}-2}+\frac {6 x^{2} \ln \left (5+x \right )}{{\mathrm e}^{2-x}-2}-\frac {3 x \left (x -1\right )}{{\mathrm e}^{2-x}-2}\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.76, size = 45, normalized size = 1.61 \begin {gather*} -\frac {3 \, {\left (x^{2} e^{x} \log \left (x + 5\right )^{2} - 2 \, x^{2} e^{x} \log \left (x + 5\right ) + {\left (x^{2} - x\right )} e^{x}\right )}}{e^{2} - 2 \, e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.28, size = 35, normalized size = 1.25 \begin {gather*} \frac {3\,x\,{\mathrm {e}}^{x-2}\,\left (x\,{\ln \left (x+5\right )}^2-2\,x\,\ln \left (x+5\right )+x-1\right )}{2\,{\mathrm {e}}^{x-2}-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 36, normalized size = 1.29 \begin {gather*} \frac {- 3 x^{2} \log {\left (x + 5 \right )}^{2} + 6 x^{2} \log {\left (x + 5 \right )} - 3 x^{2} + 3 x}{e^{2 - x} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________