Optimal. Leaf size=20 \[ 1+\frac {25}{2} \left (3+e^{\frac {e^x}{x^2}}\right ) x^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {150 x^2+e^{\frac {e^x}{x^2}} \left (50 x^2+e^x (-50+25 x)\right )}{2 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {150 x^2+e^{\frac {e^x}{x^2}} \left (50 x^2+e^x (-50+25 x)\right )}{x} \, dx\\ &=\frac {1}{2} \int \left (\frac {25 e^{\frac {e^x}{x^2}+x} (-2+x)}{x}+50 \left (3+e^{\frac {e^x}{x^2}}\right ) x\right ) \, dx\\ &=\frac {25}{2} \int \frac {e^{\frac {e^x}{x^2}+x} (-2+x)}{x} \, dx+25 \int \left (3+e^{\frac {e^x}{x^2}}\right ) x \, dx\\ &=\frac {25}{2} \int \left (e^{\frac {e^x}{x^2}+x}-\frac {2 e^{\frac {e^x}{x^2}+x}}{x}\right ) \, dx+25 \int \left (3 x+e^{\frac {e^x}{x^2}} x\right ) \, dx\\ &=\frac {75 x^2}{2}+\frac {25}{2} \int e^{\frac {e^x}{x^2}+x} \, dx-25 \int \frac {e^{\frac {e^x}{x^2}+x}}{x} \, dx+25 \int e^{\frac {e^x}{x^2}} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 18, normalized size = 0.90 \begin {gather*} \frac {25}{2} \left (3+e^{\frac {e^x}{x^2}}\right ) x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.19, size = 18, normalized size = 0.90 \begin {gather*} \frac {25}{2} \, x^{2} e^{\left (\frac {e^{x}}{x^{2}}\right )} + \frac {75}{2} \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 29, normalized size = 1.45 \begin {gather*} \frac {25}{2} \, {\left (3 \, x^{2} e^{x} + x^{2} e^{\left (\frac {x^{3} + e^{x}}{x^{2}}\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 0.95
method | result | size |
norman | \(\frac {75 x^{2}}{2}+\frac {25 \,{\mathrm e}^{\frac {{\mathrm e}^{x}}{x^{2}}} x^{2}}{2}\) | \(19\) |
risch | \(\frac {75 x^{2}}{2}+\frac {25 \,{\mathrm e}^{\frac {{\mathrm e}^{x}}{x^{2}}} x^{2}}{2}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 18, normalized size = 0.90 \begin {gather*} \frac {25}{2} \, x^{2} e^{\left (\frac {e^{x}}{x^{2}}\right )} + \frac {75}{2} \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.17, size = 14, normalized size = 0.70 \begin {gather*} \frac {25\,x^2\,\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^x}{x^2}}+3\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.58, size = 20, normalized size = 1.00 \begin {gather*} \frac {25 x^{2} e^{\frac {e^{x}}{x^{2}}}}{2} + \frac {75 x^{2}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________