Optimal. Leaf size=18 \[ x+\frac {9 x^2}{5 e^5 \log \left (x^2\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.098, Rules used = {6688, 2306, 2307, 2298} \begin {gather*} \frac {9 x^2}{5 e^5 \log \left (x^2\right )}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2298
Rule 2306
Rule 2307
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-\frac {18 x}{5 e^5 \log ^2\left (x^2\right )}+\frac {18 x}{5 e^5 \log \left (x^2\right )}\right ) \, dx\\ &=x-\frac {18 \int \frac {x}{\log ^2\left (x^2\right )} \, dx}{5 e^5}+\frac {18 \int \frac {x}{\log \left (x^2\right )} \, dx}{5 e^5}\\ &=x+\frac {9 x^2}{5 e^5 \log \left (x^2\right )}+\frac {9 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,x^2\right )}{5 e^5}-\frac {18 \int \frac {x}{\log \left (x^2\right )} \, dx}{5 e^5}\\ &=x+\frac {9 x^2}{5 e^5 \log \left (x^2\right )}+\frac {9 \text {li}\left (x^2\right )}{5 e^5}-\frac {9 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,x^2\right )}{5 e^5}\\ &=x+\frac {9 x^2}{5 e^5 \log \left (x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 18, normalized size = 1.00 \begin {gather*} x+\frac {9 x^2}{5 e^5 \log \left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 26, normalized size = 1.44 \begin {gather*} \frac {3 \, x^{2} e^{\left (\log \relax (3) - 5\right )} + 5 \, x \log \left (x^{2}\right )}{5 \, \log \left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 20, normalized size = 1.11 \begin {gather*} \frac {9 \, x^{2} e^{\left (-5\right )} \mathrm {sgn}\relax (x)^{2}}{10 \, \log \left (x \mathrm {sgn}\relax (x)\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 18, normalized size = 1.00
method | result | size |
default | \(x +\frac {9 \,{\mathrm e}^{-5} x^{2}}{5 \ln \left (x^{2}\right )}\) | \(18\) |
norman | \(\frac {x \ln \left (x^{2}\right )+\frac {9 x^{2} {\mathrm e}^{-5}}{5}}{\ln \left (x^{2}\right )}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 13, normalized size = 0.72 \begin {gather*} \frac {9 \, x^{2} e^{\left (-5\right )}}{10 \, \log \relax (x)} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.10, size = 15, normalized size = 0.83 \begin {gather*} x+\frac {9\,x^2\,{\mathrm {e}}^{-5}}{5\,\ln \left (x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 15, normalized size = 0.83 \begin {gather*} \frac {9 x^{2}}{5 e^{5} \log {\left (x^{2} \right )}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________