Optimal. Leaf size=19 \[ \log \left (\frac {1}{40} e^{x^2} x \log (x (1+x) \log (4))\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+2 x+\left (1+x+2 x^2+2 x^3\right ) \log \left (\left (x+x^2\right ) \log (4)\right )}{\left (x+x^2\right ) \log \left (\left (x+x^2\right ) \log (4)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1+2 x+\left (1+x+2 x^2+2 x^3\right ) \log \left (\left (x+x^2\right ) \log (4)\right )}{x (1+x) \log \left (\left (x+x^2\right ) \log (4)\right )} \, dx\\ &=\int \frac {1+2 x+\left (1+x+2 x^2+2 x^3\right ) \log \left (\left (x+x^2\right ) \log (4)\right )}{x (1+x) \log (x (1+x) \log (4))} \, dx\\ &=\int \left (\frac {1+2 x^2}{x}+\frac {1+2 x}{x (1+x) \log (x (1+x) \log (4))}\right ) \, dx\\ &=\int \frac {1+2 x^2}{x} \, dx+\int \frac {1+2 x}{x (1+x) \log (x (1+x) \log (4))} \, dx\\ &=\int \left (\frac {1}{x}+2 x\right ) \, dx+\int \frac {1+2 x}{x (1+x) \log (x (1+x) \log (4))} \, dx\\ &=x^2+\log (x)+\int \frac {1+2 x}{x (1+x) \log (x (1+x) \log (4))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 15, normalized size = 0.79 \begin {gather*} x^2+\log (x)+\log (\log (x (1+x) \log (4))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 17, normalized size = 0.89 \begin {gather*} x^{2} + \log \relax (x) + \log \left (\log \left (2 \, {\left (x^{2} + x\right )} \log \relax (2)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.44, size = 22, normalized size = 1.16 \begin {gather*} x^{2} + \log \relax (x) + \log \left (\log \relax (2) + \log \left (x^{2} \log \relax (2) + x \log \relax (2)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.95
method | result | size |
norman | \(x^{2}+\ln \relax (x )+\ln \left (\ln \left (2 \left (x^{2}+x \right ) \ln \relax (2)\right )\right )\) | \(18\) |
risch | \(x^{2}+\ln \relax (x )+\ln \left (\ln \left (2 \left (x^{2}+x \right ) \ln \relax (2)\right )\right )\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.67, size = 19, normalized size = 1.00 \begin {gather*} x^{2} + \log \relax (x) + \log \left (\log \relax (2) + \log \left (x + 1\right ) + \log \relax (x) + \log \left (\log \relax (2)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.90, size = 17, normalized size = 0.89 \begin {gather*} \ln \left (\ln \left (2\,\ln \relax (2)\,\left (x^2+x\right )\right )\right )+\ln \relax (x)+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 20, normalized size = 1.05 \begin {gather*} x^{2} + \log {\relax (x )} + \log {\left (\log {\left (\left (2 x^{2} + 2 x\right ) \log {\relax (2 )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________