Optimal. Leaf size=30 \[ -e^x+x+\frac {x}{\log \left (\frac {x}{e^4+2 x+(3+x)^2+\log (x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8-e^4+x^2-\log (x)+\left (9+e^4+8 x+x^2+\log (x)\right ) \log \left (\frac {x}{9+e^4+8 x+x^2+\log (x)}\right )+\left (9+e^4+8 x+x^2+e^x \left (-9-e^4-8 x-x^2\right )+\left (1-e^x\right ) \log (x)\right ) \log ^2\left (\frac {x}{9+e^4+8 x+x^2+\log (x)}\right )}{\left (9+e^4+8 x+x^2+\log (x)\right ) \log ^2\left (\frac {x}{9+e^4+8 x+x^2+\log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8 \left (1+\frac {e^4}{8}\right )+x^2-\log (x)+\left (9+e^4+8 x+x^2+\log (x)\right ) \log \left (\frac {x}{9+e^4+8 x+x^2+\log (x)}\right )+\left (9+e^4+8 x+x^2+e^x \left (-9-e^4-8 x-x^2\right )+\left (1-e^x\right ) \log (x)\right ) \log ^2\left (\frac {x}{9+e^4+8 x+x^2+\log (x)}\right )}{\left (9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx\\ &=\int \left (-e^x+\frac {9 \left (1+\frac {e^4}{9}\right )}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}+\frac {8 x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}+\frac {x^2}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}+\frac {\log (x)}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}+\frac {\log (x)}{\left (-9 \left (1+\frac {e^4}{9}\right )-8 x-x^2-\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )}+\frac {-8-e^4}{\left (9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )}+\frac {x^2}{\left (9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )}+\frac {1}{\log \left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )}\right ) \, dx\\ &=8 \int \frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\left (-8-e^4\right ) \int \frac {1}{\left (9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx+\left (9+e^4\right ) \int \frac {1}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx-\int e^x \, dx+\int \frac {x^2}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\int \frac {\log (x)}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\int \frac {\log (x)}{\left (-9 \left (1+\frac {e^4}{9}\right )-8 x-x^2-\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx+\int \frac {x^2}{\left (9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx+\int \frac {1}{\log \left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx\\ &=-e^x+8 \int \frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\left (-8-e^4\right ) \int \frac {1}{\left (9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx+\left (9+e^4\right ) \int \frac {1}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\int \frac {x^2}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\int \left (1+\frac {-9-e^4-8 x-x^2}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right ) \, dx+\int \frac {\log (x)}{\left (-9 \left (1+\frac {e^4}{9}\right )-8 x-x^2-\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx+\int \frac {x^2}{\left (9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx+\int \frac {1}{\log \left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx\\ &=-e^x+x+8 \int \frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\left (-8-e^4\right ) \int \frac {1}{\left (9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx+\left (9+e^4\right ) \int \frac {1}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\int \frac {x^2}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\int \frac {-9-e^4-8 x-x^2}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\int \frac {\log (x)}{\left (-9 \left (1+\frac {e^4}{9}\right )-8 x-x^2-\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx+\int \frac {x^2}{\left (9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx+\int \frac {1}{\log \left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx\\ &=-e^x+x+8 \int \frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\left (-8-e^4\right ) \int \frac {1}{\left (9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx+\left (9+e^4\right ) \int \frac {1}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\int \left (\frac {9 \left (1+\frac {e^4}{9}\right )}{-9 \left (1+\frac {e^4}{9}\right )-8 x-x^2-\log (x)}+\frac {8 x}{-9 \left (1+\frac {e^4}{9}\right )-8 x-x^2-\log (x)}+\frac {x^2}{-9 \left (1+\frac {e^4}{9}\right )-8 x-x^2-\log (x)}\right ) \, dx+\int \frac {x^2}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\int \frac {\log (x)}{\left (-9 \left (1+\frac {e^4}{9}\right )-8 x-x^2-\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx+\int \frac {x^2}{\left (9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx+\int \frac {1}{\log \left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx\\ &=-e^x+x+8 \int \frac {x}{-9 \left (1+\frac {e^4}{9}\right )-8 x-x^2-\log (x)} \, dx+8 \int \frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\left (-8-e^4\right ) \int \frac {1}{\left (9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx+\left (9+e^4\right ) \int \frac {1}{-9 \left (1+\frac {e^4}{9}\right )-8 x-x^2-\log (x)} \, dx+\left (9+e^4\right ) \int \frac {1}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\int \frac {x^2}{-9 \left (1+\frac {e^4}{9}\right )-8 x-x^2-\log (x)} \, dx+\int \frac {x^2}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)} \, dx+\int \frac {\log (x)}{\left (-9 \left (1+\frac {e^4}{9}\right )-8 x-x^2-\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx+\int \frac {x^2}{\left (9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)\right ) \log ^2\left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx+\int \frac {1}{\log \left (\frac {x}{9 \left (1+\frac {e^4}{9}\right )+8 x+x^2+\log (x)}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 29, normalized size = 0.97 \begin {gather*} -e^x+x+\frac {x}{\log \left (\frac {x}{9+e^4+8 x+x^2+\log (x)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 46, normalized size = 1.53 \begin {gather*} \frac {{\left (x - e^{x}\right )} \log \left (\frac {x}{x^{2} + 8 \, x + e^{4} + \log \relax (x) + 9}\right ) + x}{\log \left (\frac {x}{x^{2} + 8 \, x + e^{4} + \log \relax (x) + 9}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.53, size = 67, normalized size = 2.23 \begin {gather*} \frac {x \log \left (x^{2} + 8 \, x + e^{4} + \log \relax (x) + 9\right ) - e^{x} \log \left (x^{2} + 8 \, x + e^{4} + \log \relax (x) + 9\right ) - x \log \relax (x) + e^{x} \log \relax (x) - x}{\log \left (x^{2} + 8 \, x + e^{4} + \log \relax (x) + 9\right ) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.22, size = 173, normalized size = 5.77
method | result | size |
risch | \(x -{\mathrm e}^{x}+\frac {2 i x}{\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )+{\mathrm e}^{4}+x^{2}+8 x +9}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )+{\mathrm e}^{4}+x^{2}+8 x +9}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )+{\mathrm e}^{4}+x^{2}+8 x +9}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )+{\mathrm e}^{4}+x^{2}+8 x +9}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )+{\mathrm e}^{4}+x^{2}+8 x +9}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )+{\mathrm e}^{4}+x^{2}+8 x +9}\right )^{3}+2 i \ln \relax (x )-2 i \ln \left (\ln \relax (x )+{\mathrm e}^{4}+x^{2}+8 x +9\right )}\) | \(173\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 55, normalized size = 1.83 \begin {gather*} \frac {{\left (x - e^{x}\right )} \log \left (x^{2} + 8 \, x + e^{4} + \log \relax (x) + 9\right ) - x \log \relax (x) + e^{x} \log \relax (x) - x}{\log \left (x^{2} + 8 \, x + e^{4} + \log \relax (x) + 9\right ) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.61, size = 167, normalized size = 5.57 \begin {gather*} \frac {\frac {x\,\left (120\,x+{\mathrm {e}}^4+16\,x\,{\mathrm {e}}^4+6\,x^2\,{\mathrm {e}}^4+47\,x^2-2\,x^4+7\right )}{2\,x^2-1}+\frac {x\,\ln \relax (x)\,\left (6\,x^2+16\,x+1\right )}{2\,x^2-1}}{{\mathrm {e}}^4+\ln \relax (x)-x^2+8}-{\mathrm {e}}^x-\frac {2\,x+4}{x^2-\frac {1}{2}}-x+\frac {x-\frac {x\,\ln \left (\frac {x}{8\,x+{\mathrm {e}}^4+\ln \relax (x)+x^2+9}\right )\,\left (8\,x+{\mathrm {e}}^4+\ln \relax (x)+x^2+9\right )}{{\mathrm {e}}^4+\ln \relax (x)-x^2+8}}{\ln \left (\frac {x}{8\,x+{\mathrm {e}}^4+\ln \relax (x)+x^2+9}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.98, size = 24, normalized size = 0.80 \begin {gather*} x + \frac {x}{\log {\left (\frac {x}{x^{2} + 8 x + \log {\relax (x )} + 9 + e^{4}} \right )}} - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________