3.5.16 25003000x+18800x2+11840x3+47360x5300800x6192000x7+640000x881x5+432e5x5+864e10x5+768e15x5+256e20x5dx

Optimal. Leaf size=22 (2+5x20x)4(3+4e5)4

________________________________________________________________________________________

Rubi [B]  time = 0.06, antiderivative size = 111, normalized size of antiderivative = 5.05, number of steps used = 7, number of rules used = 3, integrand size = 76, number of rulesintegrand size = 0.039, Rules used = {6, 12, 14} 160000x4(3+4e5)4+625(3+4e5)4x464000x3(3+4e5)4+1000(3+4e5)4x3150400x2(3+4e5)49400(3+4e5)4x2+47360x(3+4e5)411840(3+4e5)4x

Antiderivative was successfully verified.

[In]

Int[(-2500 - 3000*x + 18800*x^2 + 11840*x^3 + 47360*x^5 - 300800*x^6 - 192000*x^7 + 640000*x^8)/(81*x^5 + 432*
E^5*x^5 + 864*E^10*x^5 + 768*E^15*x^5 + 256*E^20*x^5),x]

[Out]

625/((3 + 4*E^5)^4*x^4) + 1000/((3 + 4*E^5)^4*x^3) - 9400/((3 + 4*E^5)^4*x^2) - 11840/((3 + 4*E^5)^4*x) + (473
60*x)/(3 + 4*E^5)^4 - (150400*x^2)/(3 + 4*E^5)^4 - (64000*x^3)/(3 + 4*E^5)^4 + (160000*x^4)/(3 + 4*E^5)^4

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

integral=25003000x+18800x2+11840x3+47360x5300800x6192000x7+640000x8864e10x5+768e15x5+256e20x5+(81+432e5)x5dx=25003000x+18800x2+11840x3+47360x5300800x6192000x7+640000x8256e20x5+(81+432e5)x5+(864e10+768e15)x5dx=25003000x+18800x2+11840x3+47360x5300800x6192000x7+640000x8(864e10+768e15)x5+(81+432e5+256e20)x5dx=25003000x+18800x2+11840x3+47360x5300800x6192000x7+640000x8(81+432e5+864e10+768e15+256e20)x5dx=25003000x+18800x2+11840x3+47360x5300800x6192000x7+640000x8x5dx(3+4e5)4=(473602500x53000x4+18800x3+11840x2300800x192000x2+640000x3)dx(3+4e5)4=625(3+4e5)4x4+1000(3+4e5)4x39400(3+4e5)4x211840(3+4e5)4x+47360x(3+4e5)4150400x2(3+4e5)464000x3(3+4e5)4+160000x4(3+4e5)4

________________________________________________________________________________________

Mathematica [B]  time = 0.01, size = 52, normalized size = 2.36 20(1254x4+50x3470x2592x+2368x7520x23200x3+8000x4)(3+4e5)4

Antiderivative was successfully verified.

[In]

Integrate[(-2500 - 3000*x + 18800*x^2 + 11840*x^3 + 47360*x^5 - 300800*x^6 - 192000*x^7 + 640000*x^8)/(81*x^5
+ 432*E^5*x^5 + 864*E^10*x^5 + 768*E^15*x^5 + 256*E^20*x^5),x]

[Out]

(20*(125/(4*x^4) + 50/x^3 - 470/x^2 - 592/x + 2368*x - 7520*x^2 - 3200*x^3 + 8000*x^4))/(3 + 4*E^5)^4

________________________________________________________________________________________

fricas [B]  time = 0.53, size = 73, normalized size = 3.32 5(32000x812800x730080x6+9472x52368x31880x2+200x+125)256x4e20+768x4e15+864x4e10+432x4e5+81x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((640000*x^8-192000*x^7-300800*x^6+47360*x^5+11840*x^3+18800*x^2-3000*x-2500)/(256*x^5*exp(5)^4+768*x
^5*exp(5)^3+864*x^5*exp(5)^2+432*x^5*exp(5)+81*x^5),x, algorithm="fricas")

[Out]

5*(32000*x^8 - 12800*x^7 - 30080*x^6 + 9472*x^5 - 2368*x^3 - 1880*x^2 + 200*x + 125)/(256*x^4*e^20 + 768*x^4*e
^15 + 864*x^4*e^10 + 432*x^4*e^5 + 81*x^4)

________________________________________________________________________________________

giac [B]  time = 1.08, size = 442, normalized size = 20.09 640(4194304000x4e60+37748736000x4e55+155713536000x4e50+389283840000x4e45+656916480000x4e40+788299776000x4e35+689762304000x4e30+443418624000x4e25+207852480000x4e20+69284160000x4e15+15588936000x4e10+2125764000x4e5+132860250x41677721600x3e6015099494400x3e5562285414400x3e50155713536000x3e45262766592000x3e40315319910400x3e35275904921600x3e30177367449600x3e2583140992000x3e2027713664000x3e156235574400x3e10850305600x3e553144100x33942645760x2e6035483811840x2e55146370723840x2e50365926809600x2e45617501491200x2e40741001789440x2e35648376565760x2e30416813506560x2e25195381331200x2e2065127110400x2e1514653599840x2e101998218160x2e5124888635x2+1241513984xe60+11173625856xe55+46091206656xe50+115228016640xe45+194447278080xe40+233336733696xe35+204169641984xe30+131251912704xe25+61524334080xe20+20508111360xe15+4614325056xe10+629226144xe5+39326634x)4294967296e80+51539607552e75+289910292480e70+1014686023680e65+2473297182720e60+4451934928896e55+6121410527232e50+6558654136320e45+5533864427520e40+3689242951680e35+1936852549632e30+792348770304e25+247608990720e20+57140536320e15+9183300480e10+918330048e5+430467215(2368x3+1880x2200x125)x4(256e20+768e15+864e10+432e5+81)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((640000*x^8-192000*x^7-300800*x^6+47360*x^5+11840*x^3+18800*x^2-3000*x-2500)/(256*x^5*exp(5)^4+768*x
^5*exp(5)^3+864*x^5*exp(5)^2+432*x^5*exp(5)+81*x^5),x, algorithm="giac")

[Out]

640*(4194304000*x^4*e^60 + 37748736000*x^4*e^55 + 155713536000*x^4*e^50 + 389283840000*x^4*e^45 + 656916480000
*x^4*e^40 + 788299776000*x^4*e^35 + 689762304000*x^4*e^30 + 443418624000*x^4*e^25 + 207852480000*x^4*e^20 + 69
284160000*x^4*e^15 + 15588936000*x^4*e^10 + 2125764000*x^4*e^5 + 132860250*x^4 - 1677721600*x^3*e^60 - 1509949
4400*x^3*e^55 - 62285414400*x^3*e^50 - 155713536000*x^3*e^45 - 262766592000*x^3*e^40 - 315319910400*x^3*e^35 -
 275904921600*x^3*e^30 - 177367449600*x^3*e^25 - 83140992000*x^3*e^20 - 27713664000*x^3*e^15 - 6235574400*x^3*
e^10 - 850305600*x^3*e^5 - 53144100*x^3 - 3942645760*x^2*e^60 - 35483811840*x^2*e^55 - 146370723840*x^2*e^50 -
 365926809600*x^2*e^45 - 617501491200*x^2*e^40 - 741001789440*x^2*e^35 - 648376565760*x^2*e^30 - 416813506560*
x^2*e^25 - 195381331200*x^2*e^20 - 65127110400*x^2*e^15 - 14653599840*x^2*e^10 - 1998218160*x^2*e^5 - 12488863
5*x^2 + 1241513984*x*e^60 + 11173625856*x*e^55 + 46091206656*x*e^50 + 115228016640*x*e^45 + 194447278080*x*e^4
0 + 233336733696*x*e^35 + 204169641984*x*e^30 + 131251912704*x*e^25 + 61524334080*x*e^20 + 20508111360*x*e^15
+ 4614325056*x*e^10 + 629226144*x*e^5 + 39326634*x)/(4294967296*e^80 + 51539607552*e^75 + 289910292480*e^70 +
1014686023680*e^65 + 2473297182720*e^60 + 4451934928896*e^55 + 6121410527232*e^50 + 6558654136320*e^45 + 55338
64427520*e^40 + 3689242951680*e^35 + 1936852549632*e^30 + 792348770304*e^25 + 247608990720*e^20 + 57140536320*
e^15 + 9183300480*e^10 + 918330048*e^5 + 43046721) - 5*(2368*x^3 + 1880*x^2 - 200*x - 125)/(x^4*(256*e^20 + 76
8*e^15 + 864*e^10 + 432*e^5 + 81))

________________________________________________________________________________________

maple [B]  time = 0.22, size = 67, normalized size = 3.05




method result size



gosper 160000x864000x7150400x6+47360x511840x39400x2+1000x+625x4(256e20+768e15+864e10+432e5+81) 67
default 160000x464000x3150400x2+47360x9400x2+1000x311840x+625x4256e20+768e15+864e10+432e5+81 68
norman 6254e5+3+1000x4e5+39400x24e5+311840x34e5+3+47360x54e5+3150400x64e5+364000x74e5+3+160000x84e5+3x4(4e5+3)3 113
risch 160000x4256e20+768e15+864e10+432e5+8164000x3256e20+768e15+864e10+432e5+81150400x2256e20+768e15+864e10+432e5+81+47360x256e20+768e15+864e10+432e5+81+256(11840e2035520e1539960e1019980e5149854)x3+256(9400e2028200e1531725e1031725e529517532)x2+256(1000e20+3000e15+3375e10+3375e52+1012532)x+160000e20+480000e15+540000e10+270000e5+50625(256e20+768e15+864e10+432e5+81)2x4 207



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((640000*x^8-192000*x^7-300800*x^6+47360*x^5+11840*x^3+18800*x^2-3000*x-2500)/(256*x^5*exp(5)^4+768*x^5*exp
(5)^3+864*x^5*exp(5)^2+432*x^5*exp(5)+81*x^5),x,method=_RETURNVERBOSE)

[Out]

5*(32000*x^8-12800*x^7-30080*x^6+9472*x^5-2368*x^3-1880*x^2+200*x+125)/x^4/(256*exp(5)^4+768*exp(5)^3+864*exp(
5)^2+432*exp(5)+81)

________________________________________________________________________________________

maxima [B]  time = 0.39, size = 82, normalized size = 3.73 640(250x4100x3235x2+74x)256e20+768e15+864e10+432e5+815(2368x3+1880x2200x125)x4(256e20+768e15+864e10+432e5+81)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((640000*x^8-192000*x^7-300800*x^6+47360*x^5+11840*x^3+18800*x^2-3000*x-2500)/(256*x^5*exp(5)^4+768*x
^5*exp(5)^3+864*x^5*exp(5)^2+432*x^5*exp(5)+81*x^5),x, algorithm="maxima")

[Out]

640*(250*x^4 - 100*x^3 - 235*x^2 + 74*x)/(256*e^20 + 768*e^15 + 864*e^10 + 432*e^5 + 81) - 5*(2368*x^3 + 1880*
x^2 - 200*x - 125)/(x^4*(256*e^20 + 768*e^15 + 864*e^10 + 432*e^5 + 81))

________________________________________________________________________________________

mupad [B]  time = 0.46, size = 90, normalized size = 4.09 47360x(4e5+3)4150400x2(4e5+3)464000x3(4e5+3)4+160000x4(4e5+3)4+11840x39400x2+1000x+625x4(432e5+864e10+768e15+256e20+81)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(3000*x - 18800*x^2 - 11840*x^3 - 47360*x^5 + 300800*x^6 + 192000*x^7 - 640000*x^8 + 2500)/(432*x^5*exp(5
) + 864*x^5*exp(10) + 768*x^5*exp(15) + 256*x^5*exp(20) + 81*x^5),x)

[Out]

(47360*x)/(4*exp(5) + 3)^4 - (150400*x^2)/(4*exp(5) + 3)^4 - (64000*x^3)/(4*exp(5) + 3)^4 + (160000*x^4)/(4*ex
p(5) + 3)^4 + (1000*x - 9400*x^2 - 11840*x^3 + 625)/(x^4*(432*exp(5) + 864*exp(10) + 768*exp(15) + 256*exp(20)
 + 81))

________________________________________________________________________________________

sympy [B]  time = 0.12, size = 58, normalized size = 2.64 160000x464000x3150400x2+47360x+11840x39400x2+1000x+625x481+432e5+864e10+768e15+256e20

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((640000*x**8-192000*x**7-300800*x**6+47360*x**5+11840*x**3+18800*x**2-3000*x-2500)/(256*x**5*exp(5)*
*4+768*x**5*exp(5)**3+864*x**5*exp(5)**2+432*x**5*exp(5)+81*x**5),x)

[Out]

(160000*x**4 - 64000*x**3 - 150400*x**2 + 47360*x + (-11840*x**3 - 9400*x**2 + 1000*x + 625)/x**4)/(81 + 432*e
xp(5) + 864*exp(10) + 768*exp(15) + 256*exp(20))

________________________________________________________________________________________