3.5.16
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [B] time = 0.06, antiderivative size = 111, normalized size of antiderivative = 5.05,
number of steps used = 7, number of rules used = 3, integrand size = 76, = 0.039, Rules used =
{6, 12, 14}
Antiderivative was successfully verified.
[In]
Int[(-2500 - 3000*x + 18800*x^2 + 11840*x^3 + 47360*x^5 - 300800*x^6 - 192000*x^7 + 640000*x^8)/(81*x^5 + 432*
E^5*x^5 + 864*E^10*x^5 + 768*E^15*x^5 + 256*E^20*x^5),x]
[Out]
625/((3 + 4*E^5)^4*x^4) + 1000/((3 + 4*E^5)^4*x^3) - 9400/((3 + 4*E^5)^4*x^2) - 11840/((3 + 4*E^5)^4*x) + (473
60*x)/(3 + 4*E^5)^4 - (150400*x^2)/(3 + 4*E^5)^4 - (64000*x^3)/(3 + 4*E^5)^4 + (160000*x^4)/(3 + 4*E^5)^4
Rule 6
Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] && !FreeQ[v, x]
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.01, size = 52, normalized size = 2.36
Antiderivative was successfully verified.
[In]
Integrate[(-2500 - 3000*x + 18800*x^2 + 11840*x^3 + 47360*x^5 - 300800*x^6 - 192000*x^7 + 640000*x^8)/(81*x^5
+ 432*E^5*x^5 + 864*E^10*x^5 + 768*E^15*x^5 + 256*E^20*x^5),x]
[Out]
(20*(125/(4*x^4) + 50/x^3 - 470/x^2 - 592/x + 2368*x - 7520*x^2 - 3200*x^3 + 8000*x^4))/(3 + 4*E^5)^4
________________________________________________________________________________________
fricas [B] time = 0.53, size = 73, normalized size = 3.32
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((640000*x^8-192000*x^7-300800*x^6+47360*x^5+11840*x^3+18800*x^2-3000*x-2500)/(256*x^5*exp(5)^4+768*x
^5*exp(5)^3+864*x^5*exp(5)^2+432*x^5*exp(5)+81*x^5),x, algorithm="fricas")
[Out]
5*(32000*x^8 - 12800*x^7 - 30080*x^6 + 9472*x^5 - 2368*x^3 - 1880*x^2 + 200*x + 125)/(256*x^4*e^20 + 768*x^4*e
^15 + 864*x^4*e^10 + 432*x^4*e^5 + 81*x^4)
________________________________________________________________________________________
giac [B] time = 1.08, size = 442, normalized size = 20.09
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((640000*x^8-192000*x^7-300800*x^6+47360*x^5+11840*x^3+18800*x^2-3000*x-2500)/(256*x^5*exp(5)^4+768*x
^5*exp(5)^3+864*x^5*exp(5)^2+432*x^5*exp(5)+81*x^5),x, algorithm="giac")
[Out]
640*(4194304000*x^4*e^60 + 37748736000*x^4*e^55 + 155713536000*x^4*e^50 + 389283840000*x^4*e^45 + 656916480000
*x^4*e^40 + 788299776000*x^4*e^35 + 689762304000*x^4*e^30 + 443418624000*x^4*e^25 + 207852480000*x^4*e^20 + 69
284160000*x^4*e^15 + 15588936000*x^4*e^10 + 2125764000*x^4*e^5 + 132860250*x^4 - 1677721600*x^3*e^60 - 1509949
4400*x^3*e^55 - 62285414400*x^3*e^50 - 155713536000*x^3*e^45 - 262766592000*x^3*e^40 - 315319910400*x^3*e^35 -
275904921600*x^3*e^30 - 177367449600*x^3*e^25 - 83140992000*x^3*e^20 - 27713664000*x^3*e^15 - 6235574400*x^3*
e^10 - 850305600*x^3*e^5 - 53144100*x^3 - 3942645760*x^2*e^60 - 35483811840*x^2*e^55 - 146370723840*x^2*e^50 -
365926809600*x^2*e^45 - 617501491200*x^2*e^40 - 741001789440*x^2*e^35 - 648376565760*x^2*e^30 - 416813506560*
x^2*e^25 - 195381331200*x^2*e^20 - 65127110400*x^2*e^15 - 14653599840*x^2*e^10 - 1998218160*x^2*e^5 - 12488863
5*x^2 + 1241513984*x*e^60 + 11173625856*x*e^55 + 46091206656*x*e^50 + 115228016640*x*e^45 + 194447278080*x*e^4
0 + 233336733696*x*e^35 + 204169641984*x*e^30 + 131251912704*x*e^25 + 61524334080*x*e^20 + 20508111360*x*e^15
+ 4614325056*x*e^10 + 629226144*x*e^5 + 39326634*x)/(4294967296*e^80 + 51539607552*e^75 + 289910292480*e^70 +
1014686023680*e^65 + 2473297182720*e^60 + 4451934928896*e^55 + 6121410527232*e^50 + 6558654136320*e^45 + 55338
64427520*e^40 + 3689242951680*e^35 + 1936852549632*e^30 + 792348770304*e^25 + 247608990720*e^20 + 57140536320*
e^15 + 9183300480*e^10 + 918330048*e^5 + 43046721) - 5*(2368*x^3 + 1880*x^2 - 200*x - 125)/(x^4*(256*e^20 + 76
8*e^15 + 864*e^10 + 432*e^5 + 81))
________________________________________________________________________________________
maple [B] time = 0.22, size = 67, normalized size = 3.05
|
|
|
method |
result |
size |
|
|
|
gosper |
|
|
default |
|
|
norman |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((640000*x^8-192000*x^7-300800*x^6+47360*x^5+11840*x^3+18800*x^2-3000*x-2500)/(256*x^5*exp(5)^4+768*x^5*exp
(5)^3+864*x^5*exp(5)^2+432*x^5*exp(5)+81*x^5),x,method=_RETURNVERBOSE)
[Out]
5*(32000*x^8-12800*x^7-30080*x^6+9472*x^5-2368*x^3-1880*x^2+200*x+125)/x^4/(256*exp(5)^4+768*exp(5)^3+864*exp(
5)^2+432*exp(5)+81)
________________________________________________________________________________________
maxima [B] time = 0.39, size = 82, normalized size = 3.73
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((640000*x^8-192000*x^7-300800*x^6+47360*x^5+11840*x^3+18800*x^2-3000*x-2500)/(256*x^5*exp(5)^4+768*x
^5*exp(5)^3+864*x^5*exp(5)^2+432*x^5*exp(5)+81*x^5),x, algorithm="maxima")
[Out]
640*(250*x^4 - 100*x^3 - 235*x^2 + 74*x)/(256*e^20 + 768*e^15 + 864*e^10 + 432*e^5 + 81) - 5*(2368*x^3 + 1880*
x^2 - 200*x - 125)/(x^4*(256*e^20 + 768*e^15 + 864*e^10 + 432*e^5 + 81))
________________________________________________________________________________________
mupad [B] time = 0.46, size = 90, normalized size = 4.09
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(3000*x - 18800*x^2 - 11840*x^3 - 47360*x^5 + 300800*x^6 + 192000*x^7 - 640000*x^8 + 2500)/(432*x^5*exp(5
) + 864*x^5*exp(10) + 768*x^5*exp(15) + 256*x^5*exp(20) + 81*x^5),x)
[Out]
(47360*x)/(4*exp(5) + 3)^4 - (150400*x^2)/(4*exp(5) + 3)^4 - (64000*x^3)/(4*exp(5) + 3)^4 + (160000*x^4)/(4*ex
p(5) + 3)^4 + (1000*x - 9400*x^2 - 11840*x^3 + 625)/(x^4*(432*exp(5) + 864*exp(10) + 768*exp(15) + 256*exp(20)
+ 81))
________________________________________________________________________________________
sympy [B] time = 0.12, size = 58, normalized size = 2.64
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((640000*x**8-192000*x**7-300800*x**6+47360*x**5+11840*x**3+18800*x**2-3000*x-2500)/(256*x**5*exp(5)*
*4+768*x**5*exp(5)**3+864*x**5*exp(5)**2+432*x**5*exp(5)+81*x**5),x)
[Out]
(160000*x**4 - 64000*x**3 - 150400*x**2 + 47360*x + (-11840*x**3 - 9400*x**2 + 1000*x + 625)/x**4)/(81 + 432*e
xp(5) + 864*exp(10) + 768*exp(15) + 256*exp(20))
________________________________________________________________________________________