Optimal. Leaf size=26 \[ -e^4-x+5 \left (3+\frac {2}{(2+25 x) \log (3)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 17, normalized size of antiderivative = 0.65, number of steps used = 4, number of rules used = 3, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {12, 27, 1850} \begin {gather*} \frac {10}{(25 x+2) \log (3)}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-250+\left (-4-100 x-625 x^2\right ) \log (3)}{4+100 x+625 x^2} \, dx}{\log (3)}\\ &=\frac {\int \frac {-250+\left (-4-100 x-625 x^2\right ) \log (3)}{(2+25 x)^2} \, dx}{\log (3)}\\ &=\frac {\int \left (-\frac {250}{(2+25 x)^2}-\log (3)\right ) \, dx}{\log (3)}\\ &=-x+\frac {10}{(2+25 x) \log (3)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 29, normalized size = 1.12 \begin {gather*} -\frac {-250+100 x \log (3)+625 x^2 \log (3)+\log (81)}{(50+625 x) \log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 27, normalized size = 1.04 \begin {gather*} -\frac {{\left (25 \, x^{2} + 2 \, x\right )} \log \relax (3) - 10}{{\left (25 \, x + 2\right )} \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 20, normalized size = 0.77 \begin {gather*} -\frac {x \log \relax (3) - \frac {10}{25 \, x + 2}}{\log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 16, normalized size = 0.62
method | result | size |
risch | \(-x +\frac {2}{5 \ln \relax (3) \left (x +\frac {2}{25}\right )}\) | \(16\) |
default | \(\frac {-x \ln \relax (3)+\frac {10}{25 x +2}}{\ln \relax (3)}\) | \(21\) |
gosper | \(-\frac {x \left (25 x \ln \relax (3)+2 \ln \relax (3)+125\right )}{\ln \relax (3) \left (25 x +2\right )}\) | \(26\) |
meijerg | \(-\frac {125 x}{2 \ln \relax (3) \left (1+\frac {25 x}{2}\right )}-\frac {x \left (\frac {75 x}{2}+6\right )}{3 \left (1+\frac {25 x}{2}\right )}+\frac {x}{1+\frac {25 x}{2}}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 20, normalized size = 0.77 \begin {gather*} -\frac {x \log \relax (3) - \frac {10}{25 \, x + 2}}{\log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.02, size = 17, normalized size = 0.65 \begin {gather*} \frac {10}{\ln \relax (3)\,\left (25\,x+2\right )}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 0.54 \begin {gather*} - x + \frac {10}{25 x \log {\relax (3 )} + 2 \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________