Optimal. Leaf size=22 \[ \frac {(-x-x \log (2)+\log (3))^2}{4+x+x^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.15, antiderivative size = 54, normalized size of antiderivative = 2.45, number of steps used = 4, number of rules used = 4, integrand size = 82, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {1680, 12, 1814, 8} \begin {gather*} -\frac {2 \left (2 \left (x+\frac {1}{2}\right ) (1+\log (2)) (1+\log (18))+7-2 \log ^2(3)+7 \log ^2(2)+\log \left (\frac {16384}{9}\right )-\log (3) \log (4)\right )}{4 \left (x+\frac {1}{2}\right )^2+15} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {4 \left (-15 (1+\log (2)) (1+\log (18))+4 x^2 (1+\log (2)) (1+\log (18))+4 x \left (7+7 \log ^2(2)-2 \log ^2(3)-\log (3) \log (4)+\log \left (\frac {16384}{9}\right )\right )\right )}{\left (15+4 x^2\right )^2} \, dx,x,\frac {1}{2}+x\right )\\ &=4 \operatorname {Subst}\left (\int \frac {-15 (1+\log (2)) (1+\log (18))+4 x^2 (1+\log (2)) (1+\log (18))+4 x \left (7+7 \log ^2(2)-2 \log ^2(3)-\log (3) \log (4)+\log \left (\frac {16384}{9}\right )\right )}{\left (15+4 x^2\right )^2} \, dx,x,\frac {1}{2}+x\right )\\ &=-\frac {2 \left (7+7 \log ^2(2)-2 \log ^2(3)-\log (3) \log (4)+(1+2 x) (1+\log (2)) (1+\log (18))+\log \left (\frac {16384}{9}\right )\right )}{15+(1+2 x)^2}-\frac {2}{15} \operatorname {Subst}\left (\int 0 \, dx,x,\frac {1}{2}+x\right )\\ &=-\frac {2 \left (7+7 \log ^2(2)-2 \log ^2(3)-\log (3) \log (4)+(1+2 x) (1+\log (2)) (1+\log (18))+\log \left (\frac {16384}{9}\right )\right )}{15+(1+2 x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.08, size = 85, normalized size = 3.86 \begin {gather*} -\frac {60+60 \log ^2(2)+8 \log (3)-16 \log ^2(3)-4 \log (36)-\log (4) \log (81)+16 \log (256)+\log (3) \log (768)+x \left (15+15 \log ^2(2)-2 \log ^2(3)+\log (3) (16+7 \log (4))+7 \log (36)+\log (9) \log (768)+\log (65536)\right )}{15 \left (4+x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.61, size = 44, normalized size = 2.00 \begin {gather*} -\frac {{\left (x + 4\right )} \log \relax (2)^{2} + 2 \, {\left (x \log \relax (2) + x\right )} \log \relax (3) - \log \relax (3)^{2} + 2 \, {\left (x + 4\right )} \log \relax (2) + x + 4}{x^{2} + x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.12, size = 52, normalized size = 2.36 \begin {gather*} -\frac {2 \, x \log \relax (3) \log \relax (2) + x \log \relax (2)^{2} + 2 \, x \log \relax (3) - \log \relax (3)^{2} + 2 \, x \log \relax (2) + 4 \, \log \relax (2)^{2} + x + 8 \, \log \relax (2) + 4}{x^{2} + x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 50, normalized size = 2.27
method | result | size |
norman | \(\frac {\left (-2 \ln \relax (2) \ln \relax (3)-\ln \relax (2)^{2}-2 \ln \relax (3)-2 \ln \relax (2)-1\right ) x -4-4 \ln \relax (2)^{2}+\ln \relax (3)^{2}-8 \ln \relax (2)}{x^{2}+x +4}\) | \(50\) |
risch | \(\frac {\left (-2 \ln \relax (2) \ln \relax (3)-\ln \relax (2)^{2}-2 \ln \relax (3)-2 \ln \relax (2)-1\right ) x -4-4 \ln \relax (2)^{2}+\ln \relax (3)^{2}-8 \ln \relax (2)}{x^{2}+x +4}\) | \(50\) |
default | \(-\frac {4+\left (2 \ln \relax (2) \ln \relax (3)+\ln \relax (2)^{2}+2 \ln \relax (3)+2 \ln \relax (2)+1\right ) x -\ln \relax (3)^{2}+4 \ln \relax (2)^{2}+8 \ln \relax (2)}{x^{2}+x +4}\) | \(51\) |
gosper | \(\frac {-2 x \ln \relax (2) \ln \relax (3)-x \ln \relax (2)^{2}+\ln \relax (3)^{2}-2 x \ln \relax (3)-4 \ln \relax (2)^{2}-2 x \ln \relax (2)-8 \ln \relax (2)-x -4}{x^{2}+x +4}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.34, size = 48, normalized size = 2.18 \begin {gather*} -\frac {{\left (2 \, {\left (\log \relax (2) + 1\right )} \log \relax (3) + \log \relax (2)^{2} + 2 \, \log \relax (2) + 1\right )} x - \log \relax (3)^{2} + 4 \, \log \relax (2)^{2} + 8 \, \log \relax (2) + 4}{x^{2} + x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 68, normalized size = 3.09 \begin {gather*} -\frac {\ln \left (256\right )+\ln \relax (3)\,\ln \left (2^{8/15}\right )+4\,{\ln \relax (2)}^2-{\ln \relax (3)}^2+\ln \left (\frac {{177147}^{1/15}}{3}\right )\,\ln \relax (4)+x\,\left (\ln \left (36\right )+\ln \relax (4)\,\ln \left (3^{7/15}\right )+{\ln \relax (2)}^2+\ln \left (2\,2^{1/15}\right )\,\ln \relax (3)+1\right )+4}{x^2+x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 3.18, size = 53, normalized size = 2.41 \begin {gather*} \frac {x \left (- 2 \log {\relax (3 )} - 2 \log {\relax (2 )} \log {\relax (3 )} - 2 \log {\relax (2 )} - 1 - \log {\relax (2 )}^{2}\right ) - 8 \log {\relax (2 )} - 4 - 4 \log {\relax (2 )}^{2} + \log {\relax (3 )}^{2}}{x^{2} + x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________