Optimal. Leaf size=26 \[ e^{e^{-2 x^2 \log ^2(5) \log ^4(x)}}+\frac {\log \left (x^2\right )}{4} \]
________________________________________________________________________________________
Rubi [F] time = 1.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-2 x^2 \log ^2(5) \log ^4(x)} \left (e^{2 x^2 \log ^2(5) \log ^4(x)}+e^{e^{-2 x^2 \log ^2(5) \log ^4(x)}} \left (-16 x^2 \log ^2(5) \log ^3(x)-8 x^2 \log ^2(5) \log ^4(x)\right )\right )}{2 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {e^{-2 x^2 \log ^2(5) \log ^4(x)} \left (e^{2 x^2 \log ^2(5) \log ^4(x)}+e^{e^{-2 x^2 \log ^2(5) \log ^4(x)}} \left (-16 x^2 \log ^2(5) \log ^3(x)-8 x^2 \log ^2(5) \log ^4(x)\right )\right )}{x} \, dx\\ &=\frac {1}{2} \int \left (\frac {1}{x}-8 \exp \left (e^{-2 x^2 \log ^2(5) \log ^4(x)}-2 x^2 \log ^2(5) \log ^4(x)\right ) x \log ^2(5) \log ^3(x) (2+\log (x))\right ) \, dx\\ &=\frac {\log (x)}{2}-\left (4 \log ^2(5)\right ) \int \exp \left (e^{-2 x^2 \log ^2(5) \log ^4(x)}-2 x^2 \log ^2(5) \log ^4(x)\right ) x \log ^3(x) (2+\log (x)) \, dx\\ &=\frac {\log (x)}{2}-\left (4 \log ^2(5)\right ) \int \left (2 \exp \left (e^{-2 x^2 \log ^2(5) \log ^4(x)}-2 x^2 \log ^2(5) \log ^4(x)\right ) x \log ^3(x)+\exp \left (e^{-2 x^2 \log ^2(5) \log ^4(x)}-2 x^2 \log ^2(5) \log ^4(x)\right ) x \log ^4(x)\right ) \, dx\\ &=\frac {\log (x)}{2}-\left (4 \log ^2(5)\right ) \int \exp \left (e^{-2 x^2 \log ^2(5) \log ^4(x)}-2 x^2 \log ^2(5) \log ^4(x)\right ) x \log ^4(x) \, dx-\left (8 \log ^2(5)\right ) \int \exp \left (e^{-2 x^2 \log ^2(5) \log ^4(x)}-2 x^2 \log ^2(5) \log ^4(x)\right ) x \log ^3(x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 24, normalized size = 0.92 \begin {gather*} e^{e^{-2 x^2 \log ^2(5) \log ^4(x)}}+\frac {\log (x)}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 20, normalized size = 0.77 \begin {gather*} e^{\left (e^{\left (-2 \, x^{2} \log \relax (5)^{2} \log \relax (x)^{4}\right )}\right )} + \frac {1}{2} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 20, normalized size = 0.77 \begin {gather*} e^{\left (e^{\left (-2 \, x^{2} \log \relax (5)^{2} \log \relax (x)^{4}\right )}\right )} + \frac {1}{2} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 0.81
method | result | size |
risch | \(\frac {\ln \relax (x )}{2}+{\mathrm e}^{{\mathrm e}^{-2 x^{2} \ln \relax (5)^{2} \ln \relax (x )^{4}}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.78, size = 20, normalized size = 0.77 \begin {gather*} e^{\left (e^{\left (-2 \, x^{2} \log \relax (5)^{2} \log \relax (x)^{4}\right )}\right )} + \frac {1}{2} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.06, size = 20, normalized size = 0.77 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{-2\,x^2\,{\ln \relax (5)}^2\,{\ln \relax (x)}^4}}+\frac {\ln \relax (x)}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.74, size = 24, normalized size = 0.92 \begin {gather*} e^{e^{- 2 x^{2} \log {\relax (5 )}^{2} \log {\relax (x )}^{4}}} + \frac {\log {\relax (x )}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________