Optimal. Leaf size=30 \[ \frac {-2+e^4+\frac {x (2-\log (2))}{e^{e^x}-x+\log (3)}}{x^3} \]
________________________________________________________________________________________
Rubi [F] time = 8.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 e^x} \left (6-3 e^4\right )+12 x^2-3 e^4 x^2-3 x^2 \log (2)+\left (-16 x+6 e^4 x+2 x \log (2)\right ) \log (3)+\left (6-3 e^4\right ) \log ^2(3)+e^{e^x} \left (-16 x+6 e^4 x+2 x \log (2)+e^x \left (-2 x^2+x^2 \log (2)\right )+\left (12-6 e^4\right ) \log (3)\right )}{e^{2 e^x} x^4+x^6-2 x^5 \log (3)+x^4 \log ^2(3)+e^{e^x} \left (-2 x^5+2 x^4 \log (3)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 e^x} \left (6-3 e^4\right )+\left (12-3 e^4\right ) x^2-3 x^2 \log (2)+\left (-16 x+6 e^4 x+2 x \log (2)\right ) \log (3)+\left (6-3 e^4\right ) \log ^2(3)+e^{e^x} \left (-16 x+6 e^4 x+2 x \log (2)+e^x \left (-2 x^2+x^2 \log (2)\right )+\left (12-6 e^4\right ) \log (3)\right )}{e^{2 e^x} x^4+x^6-2 x^5 \log (3)+x^4 \log ^2(3)+e^{e^x} \left (-2 x^5+2 x^4 \log (3)\right )} \, dx\\ &=\int \frac {e^{2 e^x} \left (6-3 e^4\right )+x^2 \left (12-3 e^4-3 \log (2)\right )+\left (-16 x+6 e^4 x+2 x \log (2)\right ) \log (3)+\left (6-3 e^4\right ) \log ^2(3)+e^{e^x} \left (-16 x+6 e^4 x+2 x \log (2)+e^x \left (-2 x^2+x^2 \log (2)\right )+\left (12-6 e^4\right ) \log (3)\right )}{e^{2 e^x} x^4+x^6-2 x^5 \log (3)+x^4 \log ^2(3)+e^{e^x} \left (-2 x^5+2 x^4 \log (3)\right )} \, dx\\ &=\int \frac {6 e^{2 e^x} \left (1-\frac {e^4}{2}\right )+e^{e^x+x} x^2 (-2+\log (2))+6 e^{4+e^x} (x-\log (3))-3 e^4 (x-\log (3))^2+6 \log ^2(3)+e^{e^x} (12 \log (3)+x (-16+\log (4)))+x \log (3) (-16+\log (4))-x^2 (-12+\log (8))}{x^4 \left (e^{e^x}-x+\log (3)\right )^2} \, dx\\ &=\int \left (-\frac {3 e^4 (x-\log (3))^2}{x^4 \left (-e^{e^x}+x-\log (3)\right )^2}+\frac {6 \log ^2(3)}{x^4 \left (-e^{e^x}+x-\log (3)\right )^2}-\frac {3 e^{2 e^x} \left (-2+e^4\right )}{x^4 \left (e^{e^x}-x+\log (3)\right )^2}+\frac {e^{e^x+x} (-2+\log (2))}{x^2 \left (e^{e^x}-x+\log (3)\right )^2}+\frac {6 e^{4+e^x} (x-\log (3))}{x^4 \left (e^{e^x}-x+\log (3)\right )^2}+\frac {e^{e^x} (12 \log (3)-x (16-\log (4)))}{x^4 \left (e^{e^x}-x+\log (3)\right )^2}+\frac {\log (3) (-16+\log (4))}{x^3 \left (-e^{e^x}+x-\log (3)\right )^2}-\frac {-12+\log (8)}{x^2 \left (-e^{e^x}+x-\log (3)\right )^2}\right ) \, dx\\ &=6 \int \frac {e^{4+e^x} (x-\log (3))}{x^4 \left (e^{e^x}-x+\log (3)\right )^2} \, dx-\left (3 e^4\right ) \int \frac {(x-\log (3))^2}{x^4 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx+\left (3 \left (2-e^4\right )\right ) \int \frac {e^{2 e^x}}{x^4 \left (e^{e^x}-x+\log (3)\right )^2} \, dx+(-2+\log (2)) \int \frac {e^{e^x+x}}{x^2 \left (e^{e^x}-x+\log (3)\right )^2} \, dx+\left (6 \log ^2(3)\right ) \int \frac {1}{x^4 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx-(\log (3) (16-\log (4))) \int \frac {1}{x^3 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx+(12-\log (8)) \int \frac {1}{x^2 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx+\int \frac {e^{e^x} (12 \log (3)-x (16-\log (4)))}{x^4 \left (e^{e^x}-x+\log (3)\right )^2} \, dx\\ &=6 \int \left (\frac {e^{4+e^x}}{x^3 \left (-e^{e^x}+x-\log (3)\right )^2}-\frac {e^{4+e^x} \log (3)}{x^4 \left (-e^{e^x}+x-\log (3)\right )^2}\right ) \, dx-\left (3 e^4\right ) \int \left (\frac {1}{x^2 \left (-e^{e^x}+x-\log (3)\right )^2}+\frac {\log ^2(3)}{x^4 \left (-e^{e^x}+x-\log (3)\right )^2}-\frac {\log (9)}{x^3 \left (-e^{e^x}+x-\log (3)\right )^2}\right ) \, dx+\left (3 \left (2-e^4\right )\right ) \int \frac {e^{2 e^x}}{x^4 \left (e^{e^x}-x+\log (3)\right )^2} \, dx+(-2+\log (2)) \int \frac {e^{e^x+x}}{x^2 \left (e^{e^x}-x+\log (3)\right )^2} \, dx+\left (6 \log ^2(3)\right ) \int \frac {1}{x^4 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx-(\log (3) (16-\log (4))) \int \frac {1}{x^3 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx+(12-\log (8)) \int \frac {1}{x^2 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx+\int \left (\frac {12 e^{e^x} \log (3)}{x^4 \left (-e^{e^x}+x-\log (3)\right )^2}+\frac {e^{e^x} (-16+\log (4))}{x^3 \left (-e^{e^x}+x-\log (3)\right )^2}\right ) \, dx\\ &=6 \int \frac {e^{4+e^x}}{x^3 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx-\left (3 e^4\right ) \int \frac {1}{x^2 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx+\left (3 \left (2-e^4\right )\right ) \int \frac {e^{2 e^x}}{x^4 \left (e^{e^x}-x+\log (3)\right )^2} \, dx+(-2+\log (2)) \int \frac {e^{e^x+x}}{x^2 \left (e^{e^x}-x+\log (3)\right )^2} \, dx-(6 \log (3)) \int \frac {e^{4+e^x}}{x^4 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx+(12 \log (3)) \int \frac {e^{e^x}}{x^4 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx+\left (6 \log ^2(3)\right ) \int \frac {1}{x^4 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx-\left (3 e^4 \log ^2(3)\right ) \int \frac {1}{x^4 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx-(\log (3) (16-\log (4))) \int \frac {1}{x^3 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx+(-16+\log (4)) \int \frac {e^{e^x}}{x^3 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx+(12-\log (8)) \int \frac {1}{x^2 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx+\left (3 e^4 \log (9)\right ) \int \frac {1}{x^3 \left (-e^{e^x}+x-\log (3)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.22, size = 64, normalized size = 2.13 \begin {gather*} \frac {-2+e^4-\frac {x \left (2-\log (2)+e^x (x (-2+\log (2))-\log (2) \log (3)+\log (9))\right )}{\left (-1+e^x (x-\log (3))\right ) \left (e^{e^x}-x+\log (3)\right )}}{x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 51, normalized size = 1.70 \begin {gather*} \frac {x e^{4} - {\left (e^{4} - 2\right )} e^{\left (e^{x}\right )} - {\left (e^{4} - 2\right )} \log \relax (3) + x \log \relax (2) - 4 \, x}{x^{4} - x^{3} e^{\left (e^{x}\right )} - x^{3} \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.48, size = 56, normalized size = 1.87 \begin {gather*} \frac {x e^{4} - e^{4} \log \relax (3) + x \log \relax (2) - 4 \, x - e^{\left (e^{x} + 4\right )} + 2 \, e^{\left (e^{x}\right )} + 2 \, \log \relax (3)}{x^{4} - x^{3} e^{\left (e^{x}\right )} - x^{3} \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 33, normalized size = 1.10
method | result | size |
risch | \(\frac {{\mathrm e}^{4}}{x^{3}}-\frac {2}{x^{3}}-\frac {\ln \relax (2)-2}{x^{2} \left (\ln \relax (3)+{\mathrm e}^{{\mathrm e}^{x}}-x \right )}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.91, size = 50, normalized size = 1.67 \begin {gather*} \frac {x {\left (e^{4} + \log \relax (2) - 4\right )} - {\left (e^{4} - 2\right )} e^{\left (e^{x}\right )} - e^{4} \log \relax (3) + 2 \, \log \relax (3)}{x^{4} - x^{3} e^{\left (e^{x}\right )} - x^{3} \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {{\mathrm {e}}^{2\,{\mathrm {e}}^x}\,\left (3\,{\mathrm {e}}^4-6\right )+{\ln \relax (3)}^2\,\left (3\,{\mathrm {e}}^4-6\right )-\ln \relax (3)\,\left (6\,x\,{\mathrm {e}}^4-16\,x+2\,x\,\ln \relax (2)\right )+3\,x^2\,{\mathrm {e}}^4+3\,x^2\,\ln \relax (2)-{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (6\,x\,{\mathrm {e}}^4-16\,x+2\,x\,\ln \relax (2)+{\mathrm {e}}^x\,\left (x^2\,\ln \relax (2)-2\,x^2\right )-\ln \relax (3)\,\left (6\,{\mathrm {e}}^4-12\right )\right )-12\,x^2}{x^4\,{\ln \relax (3)}^2-2\,x^5\,\ln \relax (3)+x^6+x^4\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}+{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (2\,x^4\,\ln \relax (3)-2\,x^5\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 34, normalized size = 1.13 \begin {gather*} \frac {2 - \log {\relax (2 )}}{- x^{3} + x^{2} e^{e^{x}} + x^{2} \log {\relax (3 )}} - \frac {6 - 3 e^{4}}{3 x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________