Optimal. Leaf size=26 \[ x-\frac {e^{2 x} x^2 \left (4-(x+\log (x))^2\right )}{\log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 1.44, antiderivative size = 43, normalized size of antiderivative = 1.65, number of steps used = 3, number of rules used = 2, integrand size = 92, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {6742, 2288} \begin {gather*} x-\frac {e^{2 x} x \left (x^3 (-\log (x))-2 x^2 \log ^2(x)-x \log ^3(x)+4 x \log (x)\right )}{\log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {e^{2 x} x \left (4-x^2-8 \log (x)-8 x \log (x)+4 x^2 \log (x)+2 x^3 \log (x)+\log ^2(x)+6 x \log ^2(x)+4 x^2 \log ^2(x)+2 \log ^3(x)+2 x \log ^3(x)\right )}{\log ^2(x)}\right ) \, dx\\ &=x+\int \frac {e^{2 x} x \left (4-x^2-8 \log (x)-8 x \log (x)+4 x^2 \log (x)+2 x^3 \log (x)+\log ^2(x)+6 x \log ^2(x)+4 x^2 \log ^2(x)+2 \log ^3(x)+2 x \log ^3(x)\right )}{\log ^2(x)} \, dx\\ &=x-\frac {e^{2 x} x \left (4 x \log (x)-x^3 \log (x)-2 x^2 \log ^2(x)-x \log ^3(x)\right )}{\log ^2(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 41, normalized size = 1.58 \begin {gather*} x+2 e^{2 x} x^3+\frac {e^{2 x} x^2 \left (-4+x^2\right )}{\log (x)}+e^{2 x} x^2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.48, size = 46, normalized size = 1.77 \begin {gather*} \frac {x^{2} e^{\left (2 \, x\right )} \log \relax (x)^{2} + {\left (x^{4} - 4 \, x^{2}\right )} e^{\left (2 \, x\right )} + {\left (2 \, x^{3} e^{\left (2 \, x\right )} + x\right )} \log \relax (x)}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 50, normalized size = 1.92 \begin {gather*} \frac {x^{4} e^{\left (2 \, x\right )} + 2 \, x^{3} e^{\left (2 \, x\right )} \log \relax (x) + x^{2} e^{\left (2 \, x\right )} \log \relax (x)^{2} - 4 \, x^{2} e^{\left (2 \, x\right )} + x \log \relax (x)}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 39, normalized size = 1.50
method | result | size |
risch | \(2 \,{\mathrm e}^{2 x} x^{3}+x^{2} {\mathrm e}^{2 x} \ln \relax (x )+x +\frac {x^{2} {\mathrm e}^{2 x} \left (x^{2}-4\right )}{\ln \relax (x )}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 89, normalized size = 3.42 \begin {gather*} \frac {1}{2} \, {\left (4 \, x^{3} - 6 \, x^{2} + 6 \, x - 3\right )} e^{\left (2 \, x\right )} + \frac {3}{2} \, {\left (2 \, x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x\right )} + \frac {1}{4} \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} + x + \frac {{\left (4 \, x^{4} + 4 \, x^{2} \log \relax (x)^{2} - 16 \, x^{2} - {\left (2 \, x - 1\right )} \log \relax (x)\right )} e^{\left (2 \, x\right )}}{4 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.90, size = 46, normalized size = 1.77 \begin {gather*} x+2\,x^3\,{\mathrm {e}}^{2\,x}+x^2\,{\mathrm {e}}^{2\,x}\,\ln \relax (x)-\frac {4\,x^2\,{\mathrm {e}}^{2\,x}}{\ln \relax (x)}+\frac {x^4\,{\mathrm {e}}^{2\,x}}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 34, normalized size = 1.31 \begin {gather*} x + \frac {\left (x^{4} + 2 x^{3} \log {\relax (x )} + x^{2} \log {\relax (x )}^{2} - 4 x^{2}\right ) e^{2 x}}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________