Optimal. Leaf size=18 \[ \left (36+2 e^{x (2+x)^2} (2+x)\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (e^{4 x+4 x^2+x^3} \left (1296+2880 x+2016 x^2+432 x^3\right )+e^{8 x+8 x^2+2 x^3} \left (144+392 x+384 x^2+160 x^3+24 x^4\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{4 x+4 x^2+x^3} \left (1296+2880 x+2016 x^2+432 x^3\right ) \, dx+\int e^{8 x+8 x^2+2 x^3} \left (144+392 x+384 x^2+160 x^3+24 x^4\right ) \, dx\\ &=\int \left (1296 e^{4 x+4 x^2+x^3}+2880 e^{4 x+4 x^2+x^3} x+2016 e^{4 x+4 x^2+x^3} x^2+432 e^{4 x+4 x^2+x^3} x^3\right ) \, dx+\int \left (144 e^{8 x+8 x^2+2 x^3}+392 e^{8 x+8 x^2+2 x^3} x+384 e^{8 x+8 x^2+2 x^3} x^2+160 e^{8 x+8 x^2+2 x^3} x^3+24 e^{8 x+8 x^2+2 x^3} x^4\right ) \, dx\\ &=24 \int e^{8 x+8 x^2+2 x^3} x^4 \, dx+144 \int e^{8 x+8 x^2+2 x^3} \, dx+160 \int e^{8 x+8 x^2+2 x^3} x^3 \, dx+384 \int e^{8 x+8 x^2+2 x^3} x^2 \, dx+392 \int e^{8 x+8 x^2+2 x^3} x \, dx+432 \int e^{4 x+4 x^2+x^3} x^3 \, dx+1296 \int e^{4 x+4 x^2+x^3} \, dx+2016 \int e^{4 x+4 x^2+x^3} x^2 \, dx+2880 \int e^{4 x+4 x^2+x^3} x \, dx\\ &=24 \int e^{2 x (2+x)^2} x^4 \, dx+144 \int e^{2 x (2+x)^2} \, dx+160 \int e^{2 x (2+x)^2} x^3 \, dx+384 \int e^{2 x (2+x)^2} x^2 \, dx+392 \int e^{2 x (2+x)^2} x \, dx+432 \int e^{x (2+x)^2} x^3 \, dx+1296 \int e^{x (2+x)^2} \, dx+2016 \int e^{x (2+x)^2} x^2 \, dx+2880 \int e^{x (2+x)^2} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.68, size = 39, normalized size = 2.17 \begin {gather*} 4 e^{(-2+x) (2+x)^2} (2+x) \left (36 e^{2 (2+x)^2}+e^{(2+x)^3} (2+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.92, size = 44, normalized size = 2.44 \begin {gather*} 4 \, {\left (x^{2} + 4 \, x + 4\right )} e^{\left (2 \, x^{3} + 8 \, x^{2} + 8 \, x\right )} + 144 \, {\left (x + 2\right )} e^{\left (x^{3} + 4 \, x^{2} + 4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 87, normalized size = 4.83 \begin {gather*} 4 \, x^{2} e^{\left (2 \, x^{3} + 8 \, x^{2} + 8 \, x\right )} + 16 \, x e^{\left (2 \, x^{3} + 8 \, x^{2} + 8 \, x\right )} + 144 \, x e^{\left (x^{3} + 4 \, x^{2} + 4 \, x\right )} + 16 \, e^{\left (2 \, x^{3} + 8 \, x^{2} + 8 \, x\right )} + 288 \, e^{\left (x^{3} + 4 \, x^{2} + 4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 36, normalized size = 2.00
method | result | size |
risch | \(\left (4 x^{2}+16 x +16\right ) {\mathrm e}^{2 x \left (2+x \right )^{2}}+\left (288+144 x \right ) {\mathrm e}^{x \left (2+x \right )^{2}}\) | \(36\) |
default | \(144 \,{\mathrm e}^{x^{3}+4 x^{2}+4 x} x +288 \,{\mathrm e}^{x^{3}+4 x^{2}+4 x}+16 \,{\mathrm e}^{2 x^{3}+8 x^{2}+8 x}+16 x \,{\mathrm e}^{2 x^{3}+8 x^{2}+8 x}+4 x^{2} {\mathrm e}^{2 x^{3}+8 x^{2}+8 x}\) | \(88\) |
norman | \(144 \,{\mathrm e}^{x^{3}+4 x^{2}+4 x} x +288 \,{\mathrm e}^{x^{3}+4 x^{2}+4 x}+16 \,{\mathrm e}^{2 x^{3}+8 x^{2}+8 x}+16 x \,{\mathrm e}^{2 x^{3}+8 x^{2}+8 x}+4 x^{2} {\mathrm e}^{2 x^{3}+8 x^{2}+8 x}\) | \(88\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 44, normalized size = 2.44 \begin {gather*} 4 \, {\left (x^{2} + 4 \, x + 4\right )} e^{\left (2 \, x^{3} + 8 \, x^{2} + 8 \, x\right )} + 144 \, {\left (x + 2\right )} e^{\left (x^{3} + 4 \, x^{2} + 4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.04, size = 50, normalized size = 2.78 \begin {gather*} 4\,{\mathrm {e}}^{x^3+4\,x^2+4\,x}\,\left (x+2\right )\,\left (2\,{\mathrm {e}}^{x^3+4\,x^2+4\,x}+x\,{\mathrm {e}}^{x^3+4\,x^2+4\,x}+36\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 42, normalized size = 2.33 \begin {gather*} \left (144 x + 288\right ) e^{x^{3} + 4 x^{2} + 4 x} + \left (4 x^{2} + 16 x + 16\right ) e^{2 x^{3} + 8 x^{2} + 8 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________