Optimal. Leaf size=31 \[ (1-x)^2 \left (-3+x^2 \left (e^{-2+5 e^x}+(1-x) x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 49, normalized size of antiderivative = 1.58, number of steps used = 2, number of rules used = 1, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {2288} \begin {gather*} -x^6+3 x^5-3 x^4+x^3-3 x^2+e^{5 e^x-2} \left (x^4-2 x^3+x^2\right )+6 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=6 x-3 x^2+x^3-3 x^4+3 x^5-x^6+\int e^{-2+5 e^x} \left (2 x-6 x^2+4 x^3+e^x \left (5 x^2-10 x^3+5 x^4\right )\right ) \, dx\\ &=6 x-3 x^2+x^3-3 x^4+3 x^5-x^6+e^{-2+5 e^x} \left (x^2-2 x^3+x^4\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 49, normalized size = 1.58 \begin {gather*} -\frac {x \left (-e^{5 e^x} (-1+x)^2 x+e^2 \left (-6+3 x-x^2+3 x^3-3 x^4+x^5\right )\right )}{e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 47, normalized size = 1.52 \begin {gather*} -x^{6} + 3 \, x^{5} - 3 \, x^{4} + x^{3} - 3 \, x^{2} + {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} e^{\left (5 \, e^{x} - 2\right )} + 6 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 59, normalized size = 1.90 \begin {gather*} -x^{6} + 3 \, x^{5} - 3 \, x^{4} + x^{3} - 3 \, x^{2} + {\left (x^{4} e^{\left (5 \, e^{x}\right )} - 2 \, x^{3} e^{\left (5 \, e^{x}\right )} + x^{2} e^{\left (5 \, e^{x}\right )}\right )} e^{\left (-2\right )} + 6 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 47, normalized size = 1.52
method | result | size |
risch | \(x^{2} \left (x^{2}-2 x +1\right ) {\mathrm e}^{5 \,{\mathrm e}^{x}-2}-x^{6}+3 x^{5}-3 x^{4}+x^{3}-3 x^{2}+6 x\) | \(47\) |
default | \(6 x +{\mathrm e}^{5 \,{\mathrm e}^{x}-2} x^{2}+x^{4} {\mathrm e}^{5 \,{\mathrm e}^{x}-2}-2 \,{\mathrm e}^{5 \,{\mathrm e}^{x}-2} x^{3}-3 x^{2}+x^{3}-3 x^{4}+3 x^{5}-x^{6}\) | \(62\) |
norman | \(6 x +{\mathrm e}^{5 \,{\mathrm e}^{x}-2} x^{2}+x^{4} {\mathrm e}^{5 \,{\mathrm e}^{x}-2}-2 \,{\mathrm e}^{5 \,{\mathrm e}^{x}-2} x^{3}-3 x^{2}+x^{3}-3 x^{4}+3 x^{5}-x^{6}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 47, normalized size = 1.52 \begin {gather*} -x^{6} + 3 \, x^{5} - 3 \, x^{4} + x^{3} - 3 \, x^{2} + {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} e^{\left (5 \, e^{x} - 2\right )} + 6 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 61, normalized size = 1.97 \begin {gather*} 6\,x+x^2\,{\mathrm {e}}^{5\,{\mathrm {e}}^x-2}-2\,x^3\,{\mathrm {e}}^{5\,{\mathrm {e}}^x-2}+x^4\,{\mathrm {e}}^{5\,{\mathrm {e}}^x-2}-3\,x^2+x^3-3\,x^4+3\,x^5-x^6 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 44, normalized size = 1.42 \begin {gather*} - x^{6} + 3 x^{5} - 3 x^{4} + x^{3} - 3 x^{2} + 6 x + \left (x^{4} - 2 x^{3} + x^{2}\right ) e^{5 e^{x} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________