Optimal. Leaf size=22 \[ 2-x^2-e^{-\frac {12 e^x}{x}} x^4 \]
________________________________________________________________________________________
Rubi [F] time = 1.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-\frac {12 e^x}{x}} \left (-2 e^{\frac {12 e^x}{x}} x-4 x^3+e^x \left (-12 x^2+12 x^3\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 2 e^{-\frac {12 e^x}{x}} x \left (-e^{\frac {12 e^x}{x}}-6 e^x x-2 x^2+6 e^x x^2\right ) \, dx\\ &=2 \int e^{-\frac {12 e^x}{x}} x \left (-e^{\frac {12 e^x}{x}}-6 e^x x-2 x^2+6 e^x x^2\right ) \, dx\\ &=2 \int \left (6 e^{-\frac {12 e^x}{x}+x} (-1+x) x^2-e^{-\frac {12 e^x}{x}} x \left (e^{\frac {12 e^x}{x}}+2 x^2\right )\right ) \, dx\\ &=-\left (2 \int e^{-\frac {12 e^x}{x}} x \left (e^{\frac {12 e^x}{x}}+2 x^2\right ) \, dx\right )+12 \int e^{-\frac {12 e^x}{x}+x} (-1+x) x^2 \, dx\\ &=-\left (2 \int \left (x+2 e^{-\frac {12 e^x}{x}} x^3\right ) \, dx\right )+12 \int \left (-e^{-\frac {12 e^x}{x}+x} x^2+e^{-\frac {12 e^x}{x}+x} x^3\right ) \, dx\\ &=-x^2-4 \int e^{-\frac {12 e^x}{x}} x^3 \, dx-12 \int e^{-\frac {12 e^x}{x}+x} x^2 \, dx+12 \int e^{-\frac {12 e^x}{x}+x} x^3 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 21, normalized size = 0.95 \begin {gather*} -x^2 \left (1+e^{-\frac {12 e^x}{x}} x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 26, normalized size = 1.18 \begin {gather*} -{\left (x^{4} + x^{2} e^{\left (\frac {12 \, e^{x}}{x}\right )}\right )} e^{\left (-\frac {12 \, e^{x}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 30, normalized size = 1.36 \begin {gather*} -{\left (x^{4} e^{\left (\frac {x^{2} - 12 \, e^{x}}{x}\right )} + x^{2} e^{x}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.91
method | result | size |
risch | \(-x^{2}-x^{4} {\mathrm e}^{-\frac {12 \,{\mathrm e}^{x}}{x}}\) | \(20\) |
norman | \(\left (-x^{4}-x^{2} {\mathrm e}^{\frac {12 \,{\mathrm e}^{x}}{x}}\right ) {\mathrm e}^{-\frac {12 \,{\mathrm e}^{x}}{x}}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 19, normalized size = 0.86 \begin {gather*} -x^{4} e^{\left (-\frac {12 \, e^{x}}{x}\right )} - x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.37, size = 19, normalized size = 0.86 \begin {gather*} -x^4\,{\mathrm {e}}^{-\frac {12\,{\mathrm {e}}^x}{x}}-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 15, normalized size = 0.68 \begin {gather*} - x^{4} e^{- \frac {12 e^{x}}{x}} - x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________