Optimal. Leaf size=25 \[ e^{-10 \sqrt {\frac {2}{3}}} x^4 \left (e^3+e^x+x\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.40, antiderivative size = 110, normalized size of antiderivative = 4.40, number of steps used = 38, number of rules used = 5, integrand size = 81, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {12, 1593, 2196, 2176, 2194} \begin {gather*} e^{-10 \sqrt {\frac {2}{3}}} x^6+2 e^{x-10 \sqrt {\frac {2}{3}}} x^5+2 e^{3-10 \sqrt {\frac {2}{3}}} x^5+2 e^{x+\frac {1}{3} \left (9-10 \sqrt {6}\right )} x^4+e^{2 x-10 \sqrt {\frac {2}{3}}} x^4+e^{6-10 \sqrt {\frac {2}{3}}} x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{-10 \sqrt {\frac {2}{3}}} \int \left (4 e^6 x^3+10 e^3 x^4+6 x^5+e^{2 x} \left (4 x^3+2 x^4\right )+e^x \left (10 x^4+2 x^5+e^3 \left (8 x^3+2 x^4\right )\right )\right ) \, dx\\ &=e^{6-10 \sqrt {\frac {2}{3}}} x^4+2 e^{3-10 \sqrt {\frac {2}{3}}} x^5+e^{-10 \sqrt {\frac {2}{3}}} x^6+e^{-10 \sqrt {\frac {2}{3}}} \int e^{2 x} \left (4 x^3+2 x^4\right ) \, dx+e^{-10 \sqrt {\frac {2}{3}}} \int e^x \left (10 x^4+2 x^5+e^3 \left (8 x^3+2 x^4\right )\right ) \, dx\\ &=e^{6-10 \sqrt {\frac {2}{3}}} x^4+2 e^{3-10 \sqrt {\frac {2}{3}}} x^5+e^{-10 \sqrt {\frac {2}{3}}} x^6+e^{-10 \sqrt {\frac {2}{3}}} \int e^{2 x} x^3 (4+2 x) \, dx+e^{-10 \sqrt {\frac {2}{3}}} \int \left (10 e^x x^4+2 e^x x^5+2 e^{3+x} x^3 (4+x)\right ) \, dx\\ &=e^{6-10 \sqrt {\frac {2}{3}}} x^4+2 e^{3-10 \sqrt {\frac {2}{3}}} x^5+e^{-10 \sqrt {\frac {2}{3}}} x^6+e^{-10 \sqrt {\frac {2}{3}}} \int \left (4 e^{2 x} x^3+2 e^{2 x} x^4\right ) \, dx+\left (2 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^x x^5 \, dx+\left (2 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{3+x} x^3 (4+x) \, dx+\left (10 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^x x^4 \, dx\\ &=e^{6-10 \sqrt {\frac {2}{3}}} x^4+10 e^{-10 \sqrt {\frac {2}{3}}+x} x^4+2 e^{3-10 \sqrt {\frac {2}{3}}} x^5+2 e^{-10 \sqrt {\frac {2}{3}}+x} x^5+e^{-10 \sqrt {\frac {2}{3}}} x^6+\left (2 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{2 x} x^4 \, dx+\left (2 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int \left (4 e^{3+x} x^3+e^{3+x} x^4\right ) \, dx+\left (4 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{2 x} x^3 \, dx-\left (10 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^x x^4 \, dx-\left (40 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^x x^3 \, dx\\ &=-40 e^{-10 \sqrt {\frac {2}{3}}+x} x^3+2 e^{-10 \sqrt {\frac {2}{3}}+2 x} x^3+e^{6-10 \sqrt {\frac {2}{3}}} x^4+e^{-10 \sqrt {\frac {2}{3}}+2 x} x^4+2 e^{3-10 \sqrt {\frac {2}{3}}} x^5+2 e^{-10 \sqrt {\frac {2}{3}}+x} x^5+e^{-10 \sqrt {\frac {2}{3}}} x^6+\left (2 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{3+x} x^4 \, dx-\left (4 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{2 x} x^3 \, dx-\left (6 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{2 x} x^2 \, dx+\left (8 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{3+x} x^3 \, dx+\left (40 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^x x^3 \, dx+\left (120 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^x x^2 \, dx\\ &=120 e^{-10 \sqrt {\frac {2}{3}}+x} x^2-3 e^{-10 \sqrt {\frac {2}{3}}+2 x} x^2+8 e^{\frac {1}{3} \left (9-10 \sqrt {6}\right )+x} x^3+e^{6-10 \sqrt {\frac {2}{3}}} x^4+2 e^{\frac {1}{3} \left (9-10 \sqrt {6}\right )+x} x^4+e^{-10 \sqrt {\frac {2}{3}}+2 x} x^4+2 e^{3-10 \sqrt {\frac {2}{3}}} x^5+2 e^{-10 \sqrt {\frac {2}{3}}+x} x^5+e^{-10 \sqrt {\frac {2}{3}}} x^6+\left (6 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{2 x} x \, dx+\left (6 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{2 x} x^2 \, dx-\left (8 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{3+x} x^3 \, dx-\left (24 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{3+x} x^2 \, dx-\left (120 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^x x^2 \, dx-\left (240 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^x x \, dx\\ &=-240 e^{-10 \sqrt {\frac {2}{3}}+x} x+3 e^{-10 \sqrt {\frac {2}{3}}+2 x} x-24 e^{\frac {1}{3} \left (9-10 \sqrt {6}\right )+x} x^2+e^{6-10 \sqrt {\frac {2}{3}}} x^4+2 e^{\frac {1}{3} \left (9-10 \sqrt {6}\right )+x} x^4+e^{-10 \sqrt {\frac {2}{3}}+2 x} x^4+2 e^{3-10 \sqrt {\frac {2}{3}}} x^5+2 e^{-10 \sqrt {\frac {2}{3}}+x} x^5+e^{-10 \sqrt {\frac {2}{3}}} x^6-\left (3 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{2 x} \, dx-\left (6 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{2 x} x \, dx+\left (24 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{3+x} x^2 \, dx+\left (48 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{3+x} x \, dx+\left (240 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^x \, dx+\left (240 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^x x \, dx\\ &=240 e^{-10 \sqrt {\frac {2}{3}}+x}-\frac {3}{2} e^{-10 \sqrt {\frac {2}{3}}+2 x}+48 e^{\frac {1}{3} \left (9-10 \sqrt {6}\right )+x} x+e^{6-10 \sqrt {\frac {2}{3}}} x^4+2 e^{\frac {1}{3} \left (9-10 \sqrt {6}\right )+x} x^4+e^{-10 \sqrt {\frac {2}{3}}+2 x} x^4+2 e^{3-10 \sqrt {\frac {2}{3}}} x^5+2 e^{-10 \sqrt {\frac {2}{3}}+x} x^5+e^{-10 \sqrt {\frac {2}{3}}} x^6+\left (3 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{2 x} \, dx-\left (48 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{3+x} \, dx-\left (48 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{3+x} x \, dx-\left (240 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^x \, dx\\ &=-48 e^{\frac {1}{3} \left (9-10 \sqrt {6}\right )+x}+e^{6-10 \sqrt {\frac {2}{3}}} x^4+2 e^{\frac {1}{3} \left (9-10 \sqrt {6}\right )+x} x^4+e^{-10 \sqrt {\frac {2}{3}}+2 x} x^4+2 e^{3-10 \sqrt {\frac {2}{3}}} x^5+2 e^{-10 \sqrt {\frac {2}{3}}+x} x^5+e^{-10 \sqrt {\frac {2}{3}}} x^6+\left (48 e^{-10 \sqrt {\frac {2}{3}}}\right ) \int e^{3+x} \, dx\\ &=e^{6-10 \sqrt {\frac {2}{3}}} x^4+2 e^{\frac {1}{3} \left (9-10 \sqrt {6}\right )+x} x^4+e^{-10 \sqrt {\frac {2}{3}}+2 x} x^4+2 e^{3-10 \sqrt {\frac {2}{3}}} x^5+2 e^{-10 \sqrt {\frac {2}{3}}+x} x^5+e^{-10 \sqrt {\frac {2}{3}}} x^6\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 25, normalized size = 1.00 \begin {gather*} e^{-10 \sqrt {\frac {2}{3}}} x^4 \left (e^3+e^x+x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.28, size = 49, normalized size = 1.96 \begin {gather*} {\left (x^{6} + 2 \, x^{5} e^{3} + x^{4} e^{6} + x^{4} e^{\left (2 \, x\right )} + 2 \, {\left (x^{5} + x^{4} e^{3}\right )} e^{x}\right )} e^{\left (-\frac {10}{3} \, \sqrt {3} \sqrt {2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 51, normalized size = 2.04 \begin {gather*} {\left (x^{6} + 2 \, x^{5} e^{3} + 2 \, x^{5} e^{x} + x^{4} e^{6} + x^{4} e^{\left (2 \, x\right )} + 2 \, x^{4} e^{\left (x + 3\right )}\right )} e^{\left (-\frac {10}{3} \, \sqrt {3} \sqrt {2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 88, normalized size = 3.52
method | result | size |
risch | \(x^{4} {\mathrm e}^{-\frac {10 \sqrt {3}\, \sqrt {2}}{3}+6}+2 x^{5} {\mathrm e}^{-\frac {10 \sqrt {3}\, \sqrt {2}}{3}+3}+{\mathrm e}^{-\frac {10 \sqrt {3}\, \sqrt {2}}{3}} x^{6}+x^{4} {\mathrm e}^{-\frac {10 \sqrt {3}\, \sqrt {2}}{3}+2 x}+\left (2 x^{4} {\mathrm e}^{3}+2 x^{5}\right ) {\mathrm e}^{-\frac {10 \sqrt {3}\, \sqrt {2}}{3}+x}\) | \(88\) |
default | \({\mathrm e}^{-\frac {10 \sqrt {6}}{3}} \left (2 x^{5} {\mathrm e}^{x}+8 \,{\mathrm e}^{3} \left ({\mathrm e}^{x} x^{3}-3 \,{\mathrm e}^{x} x^{2}+6 \,{\mathrm e}^{x} x -6 \,{\mathrm e}^{x}\right )+2 \,{\mathrm e}^{3} \left ({\mathrm e}^{x} x^{4}-4 \,{\mathrm e}^{x} x^{3}+12 \,{\mathrm e}^{x} x^{2}-24 \,{\mathrm e}^{x} x +24 \,{\mathrm e}^{x}\right )+{\mathrm e}^{2 x} x^{4}+x^{6}+x^{4} {\mathrm e}^{6}+2 x^{5} {\mathrm e}^{3}\right )\) | \(108\) |
norman | \(\left ({\mathrm e}^{-\frac {5 \sqrt {6}}{3}} x^{6}+{\mathrm e}^{-\frac {5 \sqrt {6}}{3}} x^{4} {\mathrm e}^{2 x}+{\mathrm e}^{-\frac {5 \sqrt {6}}{3}} {\mathrm e}^{6} x^{4}+2 \,{\mathrm e}^{-\frac {5 \sqrt {6}}{3}} x^{5} {\mathrm e}^{x}+2 \,{\mathrm e}^{-\frac {5 \sqrt {6}}{3}} {\mathrm e}^{3} x^{5}+2 \,{\mathrm e}^{-\frac {5 \sqrt {6}}{3}} {\mathrm e}^{3} x^{4} {\mathrm e}^{x}\right ) {\mathrm e}^{-\frac {5 \sqrt {6}}{3}}\) | \(117\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 49, normalized size = 1.96 \begin {gather*} {\left (x^{6} + 2 \, x^{5} e^{3} + x^{4} e^{6} + x^{4} e^{\left (2 \, x\right )} + 2 \, {\left (x^{5} + x^{4} e^{3}\right )} e^{x}\right )} e^{\left (-\frac {10}{3} \, \sqrt {3} \sqrt {2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 18, normalized size = 0.72 \begin {gather*} x^4\,{\mathrm {e}}^{-\frac {10\,\sqrt {6}}{3}}\,{\left (x+{\mathrm {e}}^3+{\mathrm {e}}^x\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.20, size = 114, normalized size = 4.56 \begin {gather*} \frac {x^{6}}{e^{\frac {10 \sqrt {6}}{3}}} + \frac {2 x^{5} e^{3}}{e^{\frac {10 \sqrt {6}}{3}}} + \frac {x^{4} e^{6}}{e^{\frac {10 \sqrt {6}}{3}}} + \frac {x^{4} e^{\frac {10 \sqrt {6}}{3}} e^{2 x} + \left (2 x^{5} e^{\frac {10 \sqrt {6}}{3}} + 2 x^{4} e^{3} e^{\frac {10 \sqrt {6}}{3}}\right ) e^{x}}{e^{\frac {20 \sqrt {6}}{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________