Optimal. Leaf size=36 \[ \frac {1}{4} \left (e^x-\log (2)\right )^2+\frac {6-\left (1-x-\log \left (x^3\right )\right )^2}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 51, normalized size of antiderivative = 1.42, number of steps used = 12, number of rules used = 5, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {12, 14, 2194, 2304, 2305} \begin {gather*} -\frac {\log ^2\left (x^3\right )}{x}+\frac {2 \log \left (x^3\right )}{x}+\frac {e^{2 x}}{4}-x+\frac {5}{x}-6 \log (x)-\frac {1}{2} e^x \log (2) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rule 2304
Rule 2305
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {2-12 x-2 x^2+e^{2 x} x^2-e^x x^2 \log (2)-16 \log \left (x^3\right )+2 \log ^2\left (x^3\right )}{x^2} \, dx\\ &=\frac {1}{2} \int \left (e^{2 x}-e^x \log (2)-\frac {2 \left (-1+6 x+x^2+8 \log \left (x^3\right )-\log ^2\left (x^3\right )\right )}{x^2}\right ) \, dx\\ &=\frac {1}{2} \int e^{2 x} \, dx-\frac {1}{2} \log (2) \int e^x \, dx-\int \frac {-1+6 x+x^2+8 \log \left (x^3\right )-\log ^2\left (x^3\right )}{x^2} \, dx\\ &=\frac {e^{2 x}}{4}-\frac {1}{2} e^x \log (2)-\int \left (\frac {-1+6 x+x^2}{x^2}+\frac {8 \log \left (x^3\right )}{x^2}-\frac {\log ^2\left (x^3\right )}{x^2}\right ) \, dx\\ &=\frac {e^{2 x}}{4}-\frac {1}{2} e^x \log (2)-8 \int \frac {\log \left (x^3\right )}{x^2} \, dx-\int \frac {-1+6 x+x^2}{x^2} \, dx+\int \frac {\log ^2\left (x^3\right )}{x^2} \, dx\\ &=\frac {e^{2 x}}{4}+\frac {24}{x}-\frac {1}{2} e^x \log (2)+\frac {8 \log \left (x^3\right )}{x}-\frac {\log ^2\left (x^3\right )}{x}+6 \int \frac {\log \left (x^3\right )}{x^2} \, dx-\int \left (1-\frac {1}{x^2}+\frac {6}{x}\right ) \, dx\\ &=\frac {e^{2 x}}{4}+\frac {5}{x}-x-\frac {1}{2} e^x \log (2)-6 \log (x)+\frac {2 \log \left (x^3\right )}{x}-\frac {\log ^2\left (x^3\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 53, normalized size = 1.47 \begin {gather*} \frac {1}{2} \left (\frac {e^{2 x}}{2}+\frac {10}{x}-2 x-e^x \log (2)-12 \log (x)+\frac {4 \log \left (x^3\right )}{x}-\frac {2 \log ^2\left (x^3\right )}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 43, normalized size = 1.19 \begin {gather*} -\frac {2 \, x e^{x} \log \relax (2) + 4 \, x^{2} - x e^{\left (2 \, x\right )} + 8 \, {\left (x - 1\right )} \log \left (x^{3}\right ) + 4 \, \log \left (x^{3}\right )^{2} - 20}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 41, normalized size = 1.14 \begin {gather*} -\frac {2 \, x e^{x} \log \relax (2) + 4 \, x^{2} - x e^{\left (2 \, x\right )} + 24 \, x \log \relax (x) + 36 \, \log \relax (x)^{2} - 24 \, \log \relax (x) - 20}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 56, normalized size = 1.56
method | result | size |
default | \(\frac {{\mathrm e}^{2 x}}{4}+\frac {8 \ln \left (x^{3}\right )}{x}+\frac {23}{x}+\frac {-36-2 \ln \left (x^{3}\right )^{2}-12 \ln \left (x^{3}\right )}{2 x}-x -6 \ln \relax (x )-\frac {{\mathrm e}^{x} \ln \relax (2)}{2}\) | \(56\) |
risch | \(-\frac {9 \ln \relax (x )^{2}}{x}+\frac {3 i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+\pi \mathrm {csgn}\left (i x^{3}\right )^{3}-2 i\right ) \ln \relax (x )}{x}-\frac {-20+4 x^{2}-x \,{\mathrm e}^{2 x}+24 x \ln \relax (x )-2 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )-4 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{4}-2 \pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x^{3}\right )+2 \pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-3 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x^{3}\right )^{2}+4 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (i x^{3}\right )-2 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (i x^{3}\right )^{2}+6 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x^{3}\right )^{3}-4 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-4 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+4 i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-8 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+2 x \ln \relax (2) {\mathrm e}^{x}-6 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} \mathrm {csgn}\left (i x \right )^{2}+4 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (i x \right )^{3}-\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )^{4}+2 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} \mathrm {csgn}\left (i x^{3}\right )^{2}-2 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (i x^{3}\right )^{3}-\pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{3}\right )^{4}+2 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{5}-\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x^{3}\right )^{4}+2 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{5}-\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}-\pi ^{2} \mathrm {csgn}\left (i x^{3}\right )^{6}+4 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{5} \mathrm {csgn}\left (i x \right )+4 i \pi \mathrm {csgn}\left (i x^{3}\right )^{3}+4 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )}{4 x}\) | \(750\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 45, normalized size = 1.25 \begin {gather*} -\frac {1}{2} \, e^{x} \log \relax (2) - x - \frac {\log \left (x^{3}\right )^{2}}{x} + \frac {2 \, \log \left (x^{3}\right )}{x} + \frac {5}{x} + \frac {1}{4} \, e^{\left (2 \, x\right )} - 6 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.96, size = 42, normalized size = 1.17 \begin {gather*} \frac {{\mathrm {e}}^{2\,x}}{4}-x-2\,\ln \left (x^3\right )+\frac {-{\ln \left (x^3\right )}^2+2\,\ln \left (x^3\right )+5}{x}-\frac {{\mathrm {e}}^x\,\ln \relax (2)}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 41, normalized size = 1.14 \begin {gather*} - x + \frac {e^{2 x}}{4} - \frac {e^{x} \log {\relax (2 )}}{2} - 6 \log {\relax (x )} - \frac {\log {\left (x^{3} \right )}^{2}}{x} + \frac {2 \log {\left (x^{3} \right )}}{x} + \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________