Optimal. Leaf size=24 \[ \frac {-4+\frac {e^{18 x}}{x+10 e^{-x} x}}{x^3} \]
________________________________________________________________________________________
Rubi [F] time = 1.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1200 x+240 e^x x+12 e^{2 x} x+e^{18 x} \left (e^{2 x} (-4+18 x)+e^x (-40+190 x)\right )}{100 x^5+20 e^x x^5+e^{2 x} x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (600 x+120 e^x x+6 e^{2 x} x+e^{20 x} (-2+9 x)+5 e^{19 x} (-4+19 x)\right )}{\left (10+e^x\right )^2 x^5} \, dx\\ &=2 \int \frac {600 x+120 e^x x+6 e^{2 x} x+e^{20 x} (-2+9 x)+5 e^{19 x} (-4+19 x)}{\left (10+e^x\right )^2 x^5} \, dx\\ &=2 \int \left (-\frac {50000000000000000 e^x (-4+x)}{x^5}+\frac {10000000000000000 e^{2 x} (-2+x)}{x^5}+\frac {200000000000000 e^{4 x} (-1+x)}{x^5}-\frac {50000000000000000000}{\left (10+e^x\right )^2 x^4}+\frac {5000000000000000000 (4+x)}{\left (10+e^x\right ) x^5}+\frac {20000000000 e^{8 x} (-1+2 x)}{x^5}+\frac {2 (-1000000000000000000+3 x)}{x^5}-\frac {500000000000000 e^{3 x} (-4+3 x)}{x^5}+\frac {1000000000000 e^{6 x} (-2+3 x)}{x^5}+\frac {2000000 e^{12 x} (-1+3 x)}{x^5}+\frac {200 e^{16 x} (-1+4 x)}{x^5}-\frac {5000000000000 e^{5 x} (-4+5 x)}{x^5}+\frac {100000000 e^{10 x} (-2+5 x)}{x^5}-\frac {50000000000 e^{7 x} (-4+7 x)}{x^5}+\frac {10000 e^{14 x} (-2+7 x)}{x^5}-\frac {500000000 e^{9 x} (-4+9 x)}{x^5}+\frac {e^{18 x} (-2+9 x)}{x^5}-\frac {5000000 e^{11 x} (-4+11 x)}{x^5}-\frac {50000 e^{13 x} (-4+13 x)}{x^5}-\frac {500 e^{15 x} (-4+15 x)}{x^5}-\frac {5 e^{17 x} (-4+17 x)}{x^5}\right ) \, dx\\ &=2 \int \frac {e^{18 x} (-2+9 x)}{x^5} \, dx+4 \int \frac {-1000000000000000000+3 x}{x^5} \, dx-10 \int \frac {e^{17 x} (-4+17 x)}{x^5} \, dx+400 \int \frac {e^{16 x} (-1+4 x)}{x^5} \, dx-1000 \int \frac {e^{15 x} (-4+15 x)}{x^5} \, dx+20000 \int \frac {e^{14 x} (-2+7 x)}{x^5} \, dx-100000 \int \frac {e^{13 x} (-4+13 x)}{x^5} \, dx+4000000 \int \frac {e^{12 x} (-1+3 x)}{x^5} \, dx-10000000 \int \frac {e^{11 x} (-4+11 x)}{x^5} \, dx+200000000 \int \frac {e^{10 x} (-2+5 x)}{x^5} \, dx-1000000000 \int \frac {e^{9 x} (-4+9 x)}{x^5} \, dx+40000000000 \int \frac {e^{8 x} (-1+2 x)}{x^5} \, dx-100000000000 \int \frac {e^{7 x} (-4+7 x)}{x^5} \, dx+2000000000000 \int \frac {e^{6 x} (-2+3 x)}{x^5} \, dx-10000000000000 \int \frac {e^{5 x} (-4+5 x)}{x^5} \, dx+400000000000000 \int \frac {e^{4 x} (-1+x)}{x^5} \, dx-1000000000000000 \int \frac {e^{3 x} (-4+3 x)}{x^5} \, dx+20000000000000000 \int \frac {e^{2 x} (-2+x)}{x^5} \, dx-100000000000000000 \int \frac {e^x (-4+x)}{x^5} \, dx+10000000000000000000 \int \frac {4+x}{\left (10+e^x\right ) x^5} \, dx-100000000000000000000 \int \frac {1}{\left (10+e^x\right )^2 x^4} \, dx\\ &=-\frac {100000000000000000 e^x}{x^4}+\frac {10000000000000000 e^{2 x}}{x^4}-\frac {1000000000000000 e^{3 x}}{x^4}+\frac {100000000000000 e^{4 x}}{x^4}-\frac {10000000000000 e^{5 x}}{x^4}+\frac {1000000000000 e^{6 x}}{x^4}-\frac {100000000000 e^{7 x}}{x^4}+\frac {10000000000 e^{8 x}}{x^4}-\frac {1000000000 e^{9 x}}{x^4}+\frac {100000000 e^{10 x}}{x^4}-\frac {10000000 e^{11 x}}{x^4}+\frac {1000000 e^{12 x}}{x^4}-\frac {100000 e^{13 x}}{x^4}+\frac {10000 e^{14 x}}{x^4}-\frac {1000 e^{15 x}}{x^4}+\frac {100 e^{16 x}}{x^4}-\frac {10 e^{17 x}}{x^4}+\frac {e^{18 x}}{x^4}+4 \int \left (-\frac {1000000000000000000}{x^5}+\frac {3}{x^4}\right ) \, dx+10000000000000000000 \int \left (\frac {4}{\left (10+e^x\right ) x^5}+\frac {1}{\left (10+e^x\right ) x^4}\right ) \, dx-100000000000000000000 \int \frac {1}{\left (10+e^x\right )^2 x^4} \, dx\\ &=\frac {1000000000000000000}{x^4}-\frac {100000000000000000 e^x}{x^4}+\frac {10000000000000000 e^{2 x}}{x^4}-\frac {1000000000000000 e^{3 x}}{x^4}+\frac {100000000000000 e^{4 x}}{x^4}-\frac {10000000000000 e^{5 x}}{x^4}+\frac {1000000000000 e^{6 x}}{x^4}-\frac {100000000000 e^{7 x}}{x^4}+\frac {10000000000 e^{8 x}}{x^4}-\frac {1000000000 e^{9 x}}{x^4}+\frac {100000000 e^{10 x}}{x^4}-\frac {10000000 e^{11 x}}{x^4}+\frac {1000000 e^{12 x}}{x^4}-\frac {100000 e^{13 x}}{x^4}+\frac {10000 e^{14 x}}{x^4}-\frac {1000 e^{15 x}}{x^4}+\frac {100 e^{16 x}}{x^4}-\frac {10 e^{17 x}}{x^4}+\frac {e^{18 x}}{x^4}-\frac {4}{x^3}+10000000000000000000 \int \frac {1}{\left (10+e^x\right ) x^4} \, dx+40000000000000000000 \int \frac {1}{\left (10+e^x\right ) x^5} \, dx-100000000000000000000 \int \frac {1}{\left (10+e^x\right )^2 x^4} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.68, size = 26, normalized size = 1.08 \begin {gather*} \frac {e^{19 x}-40 x-4 e^x x}{\left (10+e^x\right ) x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.84, size = 31, normalized size = 1.29 \begin {gather*} -\frac {4 \, x e^{x} + 40 \, x - e^{\left (19 \, x\right )}}{x^{4} e^{x} + 10 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 31, normalized size = 1.29 \begin {gather*} -\frac {4 \, x e^{x} + 40 \, x - e^{\left (19 \, x\right )}}{x^{4} e^{x} + 10 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.11, size = 181, normalized size = 7.54
method | result | size |
risch | \(\frac {-4 x +1000000000000000000}{x^{4}}+\frac {{\mathrm e}^{18 x}}{x^{4}}-\frac {10 \,{\mathrm e}^{17 x}}{x^{4}}+\frac {100 \,{\mathrm e}^{16 x}}{x^{4}}-\frac {1000 \,{\mathrm e}^{15 x}}{x^{4}}+\frac {10000 \,{\mathrm e}^{14 x}}{x^{4}}-\frac {100000 \,{\mathrm e}^{13 x}}{x^{4}}+\frac {1000000 \,{\mathrm e}^{12 x}}{x^{4}}-\frac {10000000 \,{\mathrm e}^{11 x}}{x^{4}}+\frac {100000000 \,{\mathrm e}^{10 x}}{x^{4}}-\frac {1000000000 \,{\mathrm e}^{9 x}}{x^{4}}+\frac {10000000000 \,{\mathrm e}^{8 x}}{x^{4}}-\frac {100000000000 \,{\mathrm e}^{7 x}}{x^{4}}+\frac {1000000000000 \,{\mathrm e}^{6 x}}{x^{4}}-\frac {10000000000000 \,{\mathrm e}^{5 x}}{x^{4}}+\frac {100000000000000 \,{\mathrm e}^{4 x}}{x^{4}}-\frac {1000000000000000 \,{\mathrm e}^{3 x}}{x^{4}}+\frac {10000000000000000 \,{\mathrm e}^{2 x}}{x^{4}}-\frac {100000000000000000 \,{\mathrm e}^{x}}{x^{4}}-\frac {10000000000000000000}{x^{4} \left ({\mathrm e}^{x}+10\right )}\) | \(181\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 31, normalized size = 1.29 \begin {gather*} -\frac {4 \, x e^{x} + 40 \, x - e^{\left (19 \, x\right )}}{x^{4} e^{x} + 10 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.48, size = 181, normalized size = 7.54 \begin {gather*} \frac {10000000000000000\,{\mathrm {e}}^{2\,x}}{x^4}-\frac {4\,x-1000000000000000000}{x^4}-\frac {100000000000000000\,{\mathrm {e}}^x}{x^4}-\frac {1000000000000000\,{\mathrm {e}}^{3\,x}}{x^4}+\frac {100000000000000\,{\mathrm {e}}^{4\,x}}{x^4}-\frac {10000000000000\,{\mathrm {e}}^{5\,x}}{x^4}+\frac {1000000000000\,{\mathrm {e}}^{6\,x}}{x^4}-\frac {100000000000\,{\mathrm {e}}^{7\,x}}{x^4}+\frac {10000000000\,{\mathrm {e}}^{8\,x}}{x^4}-\frac {1000000000\,{\mathrm {e}}^{9\,x}}{x^4}+\frac {100000000\,{\mathrm {e}}^{10\,x}}{x^4}-\frac {10000000\,{\mathrm {e}}^{11\,x}}{x^4}+\frac {1000000\,{\mathrm {e}}^{12\,x}}{x^4}-\frac {100000\,{\mathrm {e}}^{13\,x}}{x^4}+\frac {10000\,{\mathrm {e}}^{14\,x}}{x^4}-\frac {1000\,{\mathrm {e}}^{15\,x}}{x^4}+\frac {100\,{\mathrm {e}}^{16\,x}}{x^4}-\frac {10\,{\mathrm {e}}^{17\,x}}{x^4}+\frac {{\mathrm {e}}^{18\,x}}{x^4}-\frac {10000000000000000000}{x^4\,\left ({\mathrm {e}}^x+10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.47, size = 204, normalized size = 8.50 \begin {gather*} - \frac {10000000000000000000}{x^{4} e^{x} + 10 x^{4}} + \frac {1000000000000000000 - 4 x}{x^{4}} + \frac {x^{68} e^{18 x} - 10 x^{68} e^{17 x} + 100 x^{68} e^{16 x} - 1000 x^{68} e^{15 x} + 10000 x^{68} e^{14 x} - 100000 x^{68} e^{13 x} + 1000000 x^{68} e^{12 x} - 10000000 x^{68} e^{11 x} + 100000000 x^{68} e^{10 x} - 1000000000 x^{68} e^{9 x} + 10000000000 x^{68} e^{8 x} - 100000000000 x^{68} e^{7 x} + 1000000000000 x^{68} e^{6 x} - 10000000000000 x^{68} e^{5 x} + 100000000000000 x^{68} e^{4 x} - 1000000000000000 x^{68} e^{3 x} + 10000000000000000 x^{68} e^{2 x} - 100000000000000000 x^{68} e^{x}}{x^{72}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________