Optimal. Leaf size=18 \[ e^{\frac {180 x^3}{(1-x) \log (x)}} \]
________________________________________________________________________________________
Rubi [F] time = 2.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}} \left (-180 x^2+180 x^3+\left (540 x^2-360 x^3\right ) \log (x)\right )}{\left (1-2 x+x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}} \left (-180 x^2+180 x^3+\left (540 x^2-360 x^3\right ) \log (x)\right )}{(-1+x)^2 \log ^2(x)} \, dx\\ &=\int \frac {180 e^{-\frac {180 x^3}{(-1+x) \log (x)}} x^2 (-1+x+3 \log (x)-2 x \log (x))}{(1-x)^2 \log ^2(x)} \, dx\\ &=180 \int \frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}} x^2 (-1+x+3 \log (x)-2 x \log (x))}{(1-x)^2 \log ^2(x)} \, dx\\ &=180 \int \left (\frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}} x^2}{(-1+x) \log ^2(x)}-\frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}} x^2 (-3+2 x)}{(-1+x)^2 \log (x)}\right ) \, dx\\ &=180 \int \frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}} x^2}{(-1+x) \log ^2(x)} \, dx-180 \int \frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}} x^2 (-3+2 x)}{(-1+x)^2 \log (x)} \, dx\\ &=180 \int \left (\frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}}}{\log ^2(x)}+\frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}}}{(-1+x) \log ^2(x)}+\frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}} x}{\log ^2(x)}\right ) \, dx-180 \int \left (\frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}}}{\log (x)}-\frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}}}{(-1+x)^2 \log (x)}+\frac {2 e^{-\frac {180 x^3}{(-1+x) \log (x)}} x}{\log (x)}\right ) \, dx\\ &=180 \int \frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}}}{\log ^2(x)} \, dx+180 \int \frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}}}{(-1+x) \log ^2(x)} \, dx+180 \int \frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}} x}{\log ^2(x)} \, dx-180 \int \frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}}}{\log (x)} \, dx+180 \int \frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}}}{(-1+x)^2 \log (x)} \, dx-360 \int \frac {e^{-\frac {180 x^3}{(-1+x) \log (x)}} x}{\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 16, normalized size = 0.89 \begin {gather*} e^{-\frac {180 x^3}{(-1+x) \log (x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.66, size = 15, normalized size = 0.83 \begin {gather*} e^{\left (-\frac {180 \, x^{3}}{{\left (x - 1\right )} \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 17, normalized size = 0.94 \begin {gather*} e^{\left (-\frac {180 \, x^{3}}{x \log \relax (x) - \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 16, normalized size = 0.89
method | result | size |
risch | \({\mathrm e}^{-\frac {180 x^{3}}{\left (x -1\right ) \ln \relax (x )}}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.06, size = 15, normalized size = 0.83 \begin {gather*} {\mathrm {e}}^{-\frac {180\,x^3}{\ln \relax (x)\,\left (x-1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 14, normalized size = 0.78 \begin {gather*} e^{- \frac {180 x^{3}}{\left (x - 1\right ) \log {\relax (x )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________