3.42.68 \(\int \frac {-i \pi -e^2 \log (3)-\log (4 e^2-4 \log (4))}{x^2} \, dx\)

Optimal. Leaf size=30 \[ \frac {i \pi -x+e^2 \log (3)+\log \left (-4 \left (-e^2+\log (4)\right )\right )}{x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 27, normalized size of antiderivative = 0.90, number of steps used = 2, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {12, 30} \begin {gather*} \frac {i \pi +e^2 \log (3)+\log \left (4 \left (e^2-\log (4)\right )\right )}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((-I)*Pi - E^2*Log[3] - Log[4*E^2 - 4*Log[4]])/x^2,x]

[Out]

(I*Pi + E^2*Log[3] + Log[4*(E^2 - Log[4])])/x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\left (-i \pi -e^2 \log (3)-\log \left (4 \left (e^2-\log (4)\right )\right )\right ) \int \frac {1}{x^2} \, dx\\ &=\frac {i \pi +e^2 \log (3)+\log \left (4 \left (e^2-\log (4)\right )\right )}{x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 27, normalized size = 0.90 \begin {gather*} \frac {i \pi +e^2 \log (3)+\log \left (4 \left (e^2-\log (4)\right )\right )}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((-I)*Pi - E^2*Log[3] - Log[4*E^2 - 4*Log[4]])/x^2,x]

[Out]

(I*Pi + E^2*Log[3] + Log[4*(E^2 - Log[4])])/x

________________________________________________________________________________________

fricas [A]  time = 1.08, size = 20, normalized size = 0.67 \begin {gather*} \frac {e^{2} \log \relax (3) + \log \left (-4 \, e^{2} + 8 \, \log \relax (2)\right )}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-log(8*log(2)-4*exp(2))-exp(2)*log(3))/x^2,x, algorithm="fricas")

[Out]

(e^2*log(3) + log(-4*e^2 + 8*log(2)))/x

________________________________________________________________________________________

giac [A]  time = 0.18, size = 20, normalized size = 0.67 \begin {gather*} \frac {e^{2} \log \relax (3) + \log \left (-4 \, e^{2} + 8 \, \log \relax (2)\right )}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-log(8*log(2)-4*exp(2))-exp(2)*log(3))/x^2,x, algorithm="giac")

[Out]

(e^2*log(3) + log(-4*e^2 + 8*log(2)))/x

________________________________________________________________________________________

maple [A]  time = 0.02, size = 21, normalized size = 0.70




method result size



gosper \(\frac {{\mathrm e}^{2} \ln \relax (3)+\ln \left (8 \ln \relax (2)-4 \,{\mathrm e}^{2}\right )}{x}\) \(21\)
default \(-\frac {-\ln \left (8 \ln \relax (2)-4 \,{\mathrm e}^{2}\right )-{\mathrm e}^{2} \ln \relax (3)}{x}\) \(25\)
norman \(\frac {{\mathrm e}^{2} \ln \relax (3)+2 \ln \relax (2)+\ln \left (2 \ln \relax (2)-{\mathrm e}^{2}\right )}{x}\) \(25\)
risch \(\frac {{\mathrm e}^{2} \ln \relax (3)}{x}+\frac {2 \ln \relax (2)}{x}+\frac {\ln \left (2 \ln \relax (2)-{\mathrm e}^{2}\right )}{x}\) \(31\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-ln(8*ln(2)-4*exp(2))-exp(2)*ln(3))/x^2,x,method=_RETURNVERBOSE)

[Out]

(exp(2)*ln(3)+ln(8*ln(2)-4*exp(2)))/x

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 20, normalized size = 0.67 \begin {gather*} \frac {e^{2} \log \relax (3) + \log \left (-4 \, e^{2} + 8 \, \log \relax (2)\right )}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-log(8*log(2)-4*exp(2))-exp(2)*log(3))/x^2,x, algorithm="maxima")

[Out]

(e^2*log(3) + log(-4*e^2 + 8*log(2)))/x

________________________________________________________________________________________

mupad [B]  time = 0.12, size = 20, normalized size = 0.67 \begin {gather*} \frac {\ln \left (8\,\ln \relax (2)-4\,{\mathrm {e}}^2\right )+{\mathrm {e}}^2\,\ln \relax (3)}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(8*log(2) - 4*exp(2)) + exp(2)*log(3))/x^2,x)

[Out]

(log(8*log(2) - 4*exp(2)) + exp(2)*log(3))/x

________________________________________________________________________________________

sympy [A]  time = 0.08, size = 29, normalized size = 0.97 \begin {gather*} - \frac {- e^{2} \log {\relax (3 )} - \log {\left (- 2 \log {\relax (2 )} + e^{2} \right )} - 2 \log {\relax (2 )} - i \pi }{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-ln(8*ln(2)-4*exp(2))-exp(2)*ln(3))/x**2,x)

[Out]

-(-exp(2)*log(3) - log(-2*log(2) + exp(2)) - 2*log(2) - I*pi)/x

________________________________________________________________________________________