3.42.60 \(\int \frac {1}{2} (e^x (16+e^4 (6+x^4))+e^{4+x} (6+6 x+5 x^4+x^5) \log (x)) \, dx\)

Optimal. Leaf size=22 \[ 2 e^x \left (4+\frac {1}{4} e^4 x \left (6+x^4\right ) \log (x)\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.32, antiderivative size = 30, normalized size of antiderivative = 1.36, number of steps used = 22, number of rules used = 5, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {12, 2196, 2194, 2176, 2554} \begin {gather*} \frac {1}{2} e^{x+4} x^5 \log (x)+8 e^x+3 e^{x+4} x \log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^x*(16 + E^4*(6 + x^4)) + E^(4 + x)*(6 + 6*x + 5*x^4 + x^5)*Log[x])/2,x]

[Out]

8*E^x + 3*E^(4 + x)*x*Log[x] + (E^(4 + x)*x^5*Log[x])/2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2196

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !$UseGamma === True

Rule 2554

Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[(w*D[u, x]
)/u, x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (e^x \left (16+e^4 \left (6+x^4\right )\right )+e^{4+x} \left (6+6 x+5 x^4+x^5\right ) \log (x)\right ) \, dx\\ &=\frac {1}{2} \int e^x \left (16+e^4 \left (6+x^4\right )\right ) \, dx+\frac {1}{2} \int e^{4+x} \left (6+6 x+5 x^4+x^5\right ) \log (x) \, dx\\ &=3 e^{4+x} x \log (x)+\frac {1}{2} e^{4+x} x^5 \log (x)-\frac {1}{2} \int e^{4+x} \left (6+x^4\right ) \, dx+\frac {1}{2} \int \left (16 e^x+e^{4+x} \left (6+x^4\right )\right ) \, dx\\ &=3 e^{4+x} x \log (x)+\frac {1}{2} e^{4+x} x^5 \log (x)+\frac {1}{2} \int e^{4+x} \left (6+x^4\right ) \, dx-\frac {1}{2} \int \left (6 e^{4+x}+e^{4+x} x^4\right ) \, dx+8 \int e^x \, dx\\ &=8 e^x+3 e^{4+x} x \log (x)+\frac {1}{2} e^{4+x} x^5 \log (x)-\frac {1}{2} \int e^{4+x} x^4 \, dx+\frac {1}{2} \int \left (6 e^{4+x}+e^{4+x} x^4\right ) \, dx-3 \int e^{4+x} \, dx\\ &=8 e^x-3 e^{4+x}-\frac {1}{2} e^{4+x} x^4+3 e^{4+x} x \log (x)+\frac {1}{2} e^{4+x} x^5 \log (x)+\frac {1}{2} \int e^{4+x} x^4 \, dx+2 \int e^{4+x} x^3 \, dx+3 \int e^{4+x} \, dx\\ &=8 e^x+2 e^{4+x} x^3+3 e^{4+x} x \log (x)+\frac {1}{2} e^{4+x} x^5 \log (x)-2 \int e^{4+x} x^3 \, dx-6 \int e^{4+x} x^2 \, dx\\ &=8 e^x-6 e^{4+x} x^2+3 e^{4+x} x \log (x)+\frac {1}{2} e^{4+x} x^5 \log (x)+6 \int e^{4+x} x^2 \, dx+12 \int e^{4+x} x \, dx\\ &=8 e^x+12 e^{4+x} x+3 e^{4+x} x \log (x)+\frac {1}{2} e^{4+x} x^5 \log (x)-12 \int e^{4+x} \, dx-12 \int e^{4+x} x \, dx\\ &=8 e^x-12 e^{4+x}+3 e^{4+x} x \log (x)+\frac {1}{2} e^{4+x} x^5 \log (x)+12 \int e^{4+x} \, dx\\ &=8 e^x+3 e^{4+x} x \log (x)+\frac {1}{2} e^{4+x} x^5 \log (x)\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 24, normalized size = 1.09 \begin {gather*} \frac {1}{2} \left (16 e^x+e^{4+x} x \left (6+x^4\right ) \log (x)\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^x*(16 + E^4*(6 + x^4)) + E^(4 + x)*(6 + 6*x + 5*x^4 + x^5)*Log[x])/2,x]

[Out]

(16*E^x + E^(4 + x)*x*(6 + x^4)*Log[x])/2

________________________________________________________________________________________

fricas [A]  time = 0.73, size = 25, normalized size = 1.14 \begin {gather*} \frac {1}{2} \, {\left ({\left (x^{5} + 6 \, x\right )} e^{\left (x + 8\right )} \log \relax (x) + 16 \, e^{\left (x + 4\right )}\right )} e^{\left (-4\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(x^5+5*x^4+6*x+6)*exp(4)*exp(x)*log(x)+1/2*((x^4+6)*exp(4)+16)*exp(x),x, algorithm="fricas")

[Out]

1/2*((x^5 + 6*x)*e^(x + 8)*log(x) + 16*e^(x + 4))*e^(-4)

________________________________________________________________________________________

giac [B]  time = 0.14, size = 74, normalized size = 3.36 \begin {gather*} \frac {1}{2} \, {\left (x^{5} + 6 \, x\right )} e^{\left (x + 4\right )} \log \relax (x) + \frac {1}{2} \, {\left (x^{4} - 4 \, x^{3} + 12 \, x^{2} - 24 \, x + 30\right )} e^{\left (x + 4\right )} - \frac {1}{2} \, {\left (x^{4} - 4 \, x^{3} + 12 \, x^{2} - 24 \, x + 24\right )} e^{\left (x + 4\right )} - 3 \, e^{\left (x + 4\right )} + 8 \, e^{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(x^5+5*x^4+6*x+6)*exp(4)*exp(x)*log(x)+1/2*((x^4+6)*exp(4)+16)*exp(x),x, algorithm="giac")

[Out]

1/2*(x^5 + 6*x)*e^(x + 4)*log(x) + 1/2*(x^4 - 4*x^3 + 12*x^2 - 24*x + 30)*e^(x + 4) - 1/2*(x^4 - 4*x^3 + 12*x^
2 - 24*x + 24)*e^(x + 4) - 3*e^(x + 4) + 8*e^x

________________________________________________________________________________________

maple [A]  time = 0.07, size = 26, normalized size = 1.18




method result size



risch \(\frac {\ln \relax (x ) {\mathrm e}^{4+x} x^{5}}{2}+3 \ln \relax (x ) {\mathrm e}^{4+x} x +8 \,{\mathrm e}^{x}\) \(26\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/2*(x^5+5*x^4+6*x+6)*exp(4)*exp(x)*ln(x)+1/2*((x^4+6)*exp(4)+16)*exp(x),x,method=_RETURNVERBOSE)

[Out]

1/2*ln(x)*exp(4+x)*x^5+3*ln(x)*exp(4+x)*x+8*exp(x)

________________________________________________________________________________________

maxima [B]  time = 0.45, size = 97, normalized size = 4.41 \begin {gather*} \frac {1}{2} \, {\left (x^{5} e^{4} + 6 \, x e^{4}\right )} e^{x} \log \relax (x) - \frac {1}{2} \, {\left (x^{4} e^{4} - 4 \, x^{3} e^{4} + 12 \, x^{2} e^{4} - 24 \, x e^{4} + 30 \, e^{4}\right )} e^{x} + \frac {1}{2} \, {\left (x^{4} e^{4} - 4 \, x^{3} e^{4} + 12 \, x^{2} e^{4} - 24 \, x e^{4} + 24 \, e^{4}\right )} e^{x} + 3 \, e^{\left (x + 4\right )} + 8 \, e^{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(x^5+5*x^4+6*x+6)*exp(4)*exp(x)*log(x)+1/2*((x^4+6)*exp(4)+16)*exp(x),x, algorithm="maxima")

[Out]

1/2*(x^5*e^4 + 6*x*e^4)*e^x*log(x) - 1/2*(x^4*e^4 - 4*x^3*e^4 + 12*x^2*e^4 - 24*x*e^4 + 30*e^4)*e^x + 1/2*(x^4
*e^4 - 4*x^3*e^4 + 12*x^2*e^4 - 24*x*e^4 + 24*e^4)*e^x + 3*e^(x + 4) + 8*e^x

________________________________________________________________________________________

mupad [B]  time = 3.24, size = 23, normalized size = 1.05 \begin {gather*} 8\,{\mathrm {e}}^x+{\mathrm {e}}^x\,\ln \relax (x)\,\left (\frac {{\mathrm {e}}^4\,x^5}{2}+3\,{\mathrm {e}}^4\,x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x)*(exp(4)*(x^4 + 6) + 16))/2 + (exp(4)*exp(x)*log(x)*(6*x + 5*x^4 + x^5 + 6))/2,x)

[Out]

8*exp(x) + exp(x)*log(x)*(3*x*exp(4) + (x^5*exp(4))/2)

________________________________________________________________________________________

sympy [A]  time = 0.35, size = 26, normalized size = 1.18 \begin {gather*} \frac {\left (x^{5} e^{4} \log {\relax (x )} + 6 x e^{4} \log {\relax (x )} + 16\right ) e^{x}}{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(x**5+5*x**4+6*x+6)*exp(4)*exp(x)*ln(x)+1/2*((x**4+6)*exp(4)+16)*exp(x),x)

[Out]

(x**5*exp(4)*log(x) + 6*x*exp(4)*log(x) + 16)*exp(x)/2

________________________________________________________________________________________