Optimal. Leaf size=28 \[ \frac {4 (5-x)^2 x^2}{\log ^2\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.86, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (200 x-80 x^2+8 x^3\right ) \log \left (\frac {25}{x^2}\right )+\left (400 x-160 x^2+16 x^3+\left (200 x-120 x^2+16 x^3\right ) \log \left (\frac {25}{x^2}\right )\right ) \log \left (\frac {12}{x}\right )}{\log ^3\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 (5-x) x \left (-2 (-5+x) \log \left (\frac {12}{x}\right )-\log \left (\frac {25}{x^2}\right ) \left (-5+x+(-5+2 x) \log \left (\frac {12}{x}\right )\right )\right )}{\log ^3\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )} \, dx\\ &=8 \int \frac {(5-x) x \left (-2 (-5+x) \log \left (\frac {12}{x}\right )-\log \left (\frac {25}{x^2}\right ) \left (-5+x+(-5+2 x) \log \left (\frac {12}{x}\right )\right )\right )}{\log ^3\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )} \, dx\\ &=8 \int \left (\frac {(-5+x)^2 x}{\log ^2\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )}+\frac {(-5+x) x \left (-10+2 x-5 \log \left (\frac {25}{x^2}\right )+2 x \log \left (\frac {25}{x^2}\right )\right )}{\log ^3\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )}\right ) \, dx\\ &=8 \int \frac {(-5+x)^2 x}{\log ^2\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )} \, dx+8 \int \frac {(-5+x) x \left (-10+2 x-5 \log \left (\frac {25}{x^2}\right )+2 x \log \left (\frac {25}{x^2}\right )\right )}{\log ^3\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )} \, dx\\ &=8 \int \left (\frac {25 x}{\log ^2\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )}-\frac {10 x^2}{\log ^2\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )}+\frac {x^3}{\log ^2\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )}\right ) \, dx+8 \int \left (-\frac {5 x \left (-10+2 x-5 \log \left (\frac {25}{x^2}\right )+2 x \log \left (\frac {25}{x^2}\right )\right )}{\log ^3\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )}+\frac {x^2 \left (-10+2 x-5 \log \left (\frac {25}{x^2}\right )+2 x \log \left (\frac {25}{x^2}\right )\right )}{\log ^3\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )}\right ) \, dx\\ &=8 \int \frac {x^3}{\log ^2\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )} \, dx+8 \int \frac {x^2 \left (-10+2 x-5 \log \left (\frac {25}{x^2}\right )+2 x \log \left (\frac {25}{x^2}\right )\right )}{\log ^3\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )} \, dx-40 \int \frac {x \left (-10+2 x-5 \log \left (\frac {25}{x^2}\right )+2 x \log \left (\frac {25}{x^2}\right )\right )}{\log ^3\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )} \, dx-80 \int \frac {x^2}{\log ^2\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )} \, dx+200 \int \frac {x}{\log ^2\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )} \, dx\\ &=8 \int \left (-\frac {10 x^2}{\log ^3\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )}+\frac {2 x^3}{\log ^3\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )}-\frac {5 x^2}{\log ^2\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )}+\frac {2 x^3}{\log ^2\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )}\right ) \, dx+8 \int \frac {x^3}{\log ^2\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )} \, dx-40 \int \left (-\frac {10 x}{\log ^3\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )}+\frac {2 x^2}{\log ^3\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )}-\frac {5 x}{\log ^2\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )}+\frac {2 x^2}{\log ^2\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )}\right ) \, dx-80 \int \frac {x^2}{\log ^2\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )} \, dx+200 \int \frac {x}{\log ^2\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )} \, dx\\ &=8 \int \frac {x^3}{\log ^2\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )} \, dx+16 \int \frac {x^3}{\log ^3\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )} \, dx+16 \int \frac {x^3}{\log ^2\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )} \, dx-40 \int \frac {x^2}{\log ^2\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )} \, dx-80 \int \frac {x^2}{\log ^2\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )} \, dx-2 \left (80 \int \frac {x^2}{\log ^3\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )} \, dx\right )-80 \int \frac {x^2}{\log ^2\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )} \, dx+200 \int \frac {x}{\log ^2\left (\frac {25}{x^2}\right ) \log ^3\left (\frac {12}{x}\right )} \, dx+200 \int \frac {x}{\log ^2\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )} \, dx+400 \int \frac {x}{\log ^3\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 26, normalized size = 0.93 \begin {gather*} \frac {4 (-5+x)^2 x^2}{\log ^2\left (\frac {25}{x^2}\right ) \log ^2\left (\frac {12}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 52, normalized size = 1.86 \begin {gather*} \frac {16 \, {\left (x^{4} - 10 \, x^{3} + 25 \, x^{2}\right )}}{\log \left (\frac {144}{25}\right )^{2} \log \left (\frac {25}{x^{2}}\right )^{2} + 2 \, \log \left (\frac {144}{25}\right ) \log \left (\frac {25}{x^{2}}\right )^{3} + \log \left (\frac {25}{x^{2}}\right )^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.28, size = 284, normalized size = 10.14 \begin {gather*} \frac {x^{4} \log \left (12\right )^{2} - 2 \, x^{4} \log \left (12\right ) \log \relax (5) + x^{4} \log \relax (5)^{2} - 10 \, x^{3} \log \left (12\right )^{2} + 20 \, x^{3} \log \left (12\right ) \log \relax (5) - 10 \, x^{3} \log \relax (5)^{2} + 25 \, x^{2} \log \left (12\right )^{2} - 50 \, x^{2} \log \left (12\right ) \log \relax (5) + 25 \, x^{2} \log \relax (5)^{2}}{\log \left (12\right )^{4} \log \relax (5)^{2} - 2 \, \log \left (12\right )^{3} \log \relax (5)^{3} + \log \left (12\right )^{2} \log \relax (5)^{4} - 2 \, \log \left (12\right )^{4} \log \relax (5) \log \relax (x) + 2 \, \log \left (12\right )^{3} \log \relax (5)^{2} \log \relax (x) + 2 \, \log \left (12\right )^{2} \log \relax (5)^{3} \log \relax (x) - 2 \, \log \left (12\right ) \log \relax (5)^{4} \log \relax (x) + \log \left (12\right )^{4} \log \relax (x)^{2} + 2 \, \log \left (12\right )^{3} \log \relax (5) \log \relax (x)^{2} - 6 \, \log \left (12\right )^{2} \log \relax (5)^{2} \log \relax (x)^{2} + 2 \, \log \left (12\right ) \log \relax (5)^{3} \log \relax (x)^{2} + \log \relax (5)^{4} \log \relax (x)^{2} - 2 \, \log \left (12\right )^{3} \log \relax (x)^{3} + 2 \, \log \left (12\right )^{2} \log \relax (5) \log \relax (x)^{3} + 2 \, \log \left (12\right ) \log \relax (5)^{2} \log \relax (x)^{3} - 2 \, \log \relax (5)^{3} \log \relax (x)^{3} + \log \left (12\right )^{2} \log \relax (x)^{4} - 2 \, \log \left (12\right ) \log \relax (5) \log \relax (x)^{4} + \log \relax (5)^{2} \log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (16 x^{3}-120 x^{2}+200 x \right ) \ln \left (\frac {25}{x^{2}}\right )+16 x^{3}-160 x^{2}+400 x \right ) \ln \left (\frac {12}{x}\right )+\left (8 x^{3}-80 x^{2}+200 x \right ) \ln \left (\frac {25}{x^{2}}\right )}{\ln \left (\frac {25}{x^{2}}\right )^{3} \ln \left (\frac {12}{x}\right )^{3}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 145, normalized size = 5.18 \begin {gather*} \frac {x^{4} - 10 \, x^{3} + 25 \, x^{2}}{\log \relax (5)^{2} \log \relax (3)^{2} + 4 \, \log \relax (5)^{2} \log \relax (3) \log \relax (2) + 4 \, \log \relax (5)^{2} \log \relax (2)^{2} - 2 \, {\left (\log \relax (5) + \log \relax (3) + 2 \, \log \relax (2)\right )} \log \relax (x)^{3} + \log \relax (x)^{4} + {\left (\log \relax (5)^{2} + 4 \, \log \relax (5) \log \relax (3) + \log \relax (3)^{2} + 4 \, {\left (2 \, \log \relax (5) + \log \relax (3)\right )} \log \relax (2) + 4 \, \log \relax (2)^{2}\right )} \log \relax (x)^{2} - 2 \, {\left (\log \relax (5)^{2} \log \relax (3) + \log \relax (5) \log \relax (3)^{2} + 4 \, \log \relax (5) \log \relax (2)^{2} + 2 \, {\left (\log \relax (5)^{2} + 2 \, \log \relax (5) \log \relax (3)\right )} \log \relax (2)\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.35, size = 70, normalized size = 2.50 \begin {gather*} \frac {4\,x^2\,{\left (x-5\right )}^2}{4\,{\ln \left (\frac {12}{x}\right )}^4-4\,{\ln \left (\frac {12}{x}\right )}^3\,\left (2\,\ln \left (\frac {1}{x}\right )+\ln \left (\frac {144\,x^2}{25}\right )\right )+{\ln \left (\frac {12}{x}\right )}^2\,{\left (2\,\ln \left (\frac {1}{x}\right )+\ln \left (\frac {144\,x^2}{25}\right )\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.47, size = 71, normalized size = 2.54 \begin {gather*} \frac {16 x^{4} - 160 x^{3} + 400 x^{2}}{\log {\left (\frac {25}{x^{2}} \right )}^{4} + \left (- 4 \log {\relax (5 )} + 4 \log {\left (12 \right )}\right ) \log {\left (\frac {25}{x^{2}} \right )}^{3} + \left (- 8 \log {\relax (5 )} \log {\left (12 \right )} + 4 \log {\relax (5 )}^{2} + 4 \log {\left (12 \right )}^{2}\right ) \log {\left (\frac {25}{x^{2}} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________