Optimal. Leaf size=18 \[ e^{-6+\frac {10}{x}} x (5+10 x \log (3)) \]
________________________________________________________________________________________
Rubi [C] time = 0.42, antiderivative size = 90, normalized size of antiderivative = 5.00, number of steps used = 9, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {6741, 6742, 2210, 2206, 2214} \begin {gather*} \frac {50 \text {Ei}\left (\frac {10}{x}\right )}{e^6}-\frac {1000 \log (3) \text {Ei}\left (\frac {10}{x}\right )}{e^6}-\frac {50 (1-20 \log (3)) \text {Ei}\left (\frac {10}{x}\right )}{e^6}+10 e^{\frac {10}{x}-6} x^2 \log (3)+100 e^{\frac {10}{x}-6} x \log (3)+5 e^{\frac {10}{x}-6} x (1-20 \log (3)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2206
Rule 2210
Rule 2214
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-6+\frac {10}{x}} \left (-50+5 x (1-20 \log (3))+20 x^2 \log (3)\right )}{x} \, dx\\ &=\int \left (-\frac {50 e^{-6+\frac {10}{x}}}{x}+5 e^{-6+\frac {10}{x}} (1-20 \log (3))+20 e^{-6+\frac {10}{x}} x \log (3)\right ) \, dx\\ &=-\left (50 \int \frac {e^{-6+\frac {10}{x}}}{x} \, dx\right )+(5 (1-20 \log (3))) \int e^{-6+\frac {10}{x}} \, dx+(20 \log (3)) \int e^{-6+\frac {10}{x}} x \, dx\\ &=\frac {50 \text {Ei}\left (\frac {10}{x}\right )}{e^6}+5 e^{-6+\frac {10}{x}} x (1-20 \log (3))+10 e^{-6+\frac {10}{x}} x^2 \log (3)+(50 (1-20 \log (3))) \int \frac {e^{-6+\frac {10}{x}}}{x} \, dx+(100 \log (3)) \int e^{-6+\frac {10}{x}} \, dx\\ &=\frac {50 \text {Ei}\left (\frac {10}{x}\right )}{e^6}+5 e^{-6+\frac {10}{x}} x (1-20 \log (3))-\frac {50 \text {Ei}\left (\frac {10}{x}\right ) (1-20 \log (3))}{e^6}+100 e^{-6+\frac {10}{x}} x \log (3)+10 e^{-6+\frac {10}{x}} x^2 \log (3)+(1000 \log (3)) \int \frac {e^{-6+\frac {10}{x}}}{x} \, dx\\ &=\frac {50 \text {Ei}\left (\frac {10}{x}\right )}{e^6}+5 e^{-6+\frac {10}{x}} x (1-20 \log (3))-\frac {50 \text {Ei}\left (\frac {10}{x}\right ) (1-20 \log (3))}{e^6}+100 e^{-6+\frac {10}{x}} x \log (3)+10 e^{-6+\frac {10}{x}} x^2 \log (3)-\frac {1000 \text {Ei}\left (\frac {10}{x}\right ) \log (3)}{e^6}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 20, normalized size = 1.11 \begin {gather*} \frac {5}{2} e^{-6+\frac {10}{x}} x (2+x \log (81)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 22, normalized size = 1.22 \begin {gather*} 5 \, {\left (2 \, x^{2} \log \relax (3) + x\right )} e^{\left (-\frac {2 \, {\left (3 \, x - 5\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 77, normalized size = 4.28 \begin {gather*} \frac {25 \, {\left (10 \, e^{\left (-\frac {2 \, {\left (3 \, x - 5\right )}}{x}\right )} \log \relax (3) - \frac {{\left (3 \, x - 5\right )} e^{\left (-\frac {2 \, {\left (3 \, x - 5\right )}}{x}\right )}}{x} + 3 \, e^{\left (-\frac {2 \, {\left (3 \, x - 5\right )}}{x}\right )}\right )}}{\frac {{\left (3 \, x - 5\right )}^{2}}{x^{2}} - \frac {6 \, {\left (3 \, x - 5\right )}}{x} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 23, normalized size = 1.28
method | result | size |
gosper | \(5 \left (2 x \ln \relax (3)+1\right ) x \,{\mathrm e}^{-\frac {2 \left (3 x -5\right )}{x}}\) | \(23\) |
risch | \(\left (5 x +10 x^{2} \ln \relax (3)\right ) {\mathrm e}^{-\frac {2 \left (3 x -5\right )}{x}}\) | \(24\) |
norman | \(\left (5 x +10 x^{2} \ln \relax (3)\right ) {\mathrm e}^{-\frac {2 \left (3 x -5\right )}{x}}\) | \(25\) |
derivativedivides | \(5 \,{\mathrm e}^{-6+\frac {10}{x}} x -20 \ln \relax (3) {\mathrm e}^{-6+\frac {10}{x}} x^{2} \left (3-\frac {5}{x}\right )+70 \ln \relax (3) {\mathrm e}^{-6+\frac {10}{x}} x^{2}-100 \ln \relax (3) {\mathrm e}^{-6+\frac {10}{x}} x\) | \(63\) |
default | \(5 \,{\mathrm e}^{-6+\frac {10}{x}} x -20 \ln \relax (3) {\mathrm e}^{-6+\frac {10}{x}} x^{2} \left (3-\frac {5}{x}\right )+70 \ln \relax (3) {\mathrm e}^{-6+\frac {10}{x}} x^{2}-100 \ln \relax (3) {\mathrm e}^{-6+\frac {10}{x}} x\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.51, size = 48, normalized size = 2.67 \begin {gather*} 1000 \, e^{\left (-6\right )} \Gamma \left (-1, -\frac {10}{x}\right ) \log \relax (3) + 2000 \, e^{\left (-6\right )} \Gamma \left (-2, -\frac {10}{x}\right ) \log \relax (3) + 50 \, {\rm Ei}\left (\frac {10}{x}\right ) e^{\left (-6\right )} - 50 \, e^{\left (-6\right )} \Gamma \left (-1, -\frac {10}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.46, size = 18, normalized size = 1.00 \begin {gather*} 5\,x\,{\mathrm {e}}^{\frac {10}{x}-6}\,\left (2\,x\,\ln \relax (3)+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 19, normalized size = 1.06 \begin {gather*} \left (10 x^{2} \log {\relax (3 )} + 5 x\right ) e^{- \frac {2 \left (3 x - 5\right )}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________