Optimal. Leaf size=16 \[ \log \left (4-\frac {e^x x}{3-x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-3-3 x+x^2\right )}{36-24 x+4 x^2+e^x \left (-3 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (-3-3 x+x^2\right )}{(3-x) \left (12-4 x-e^x x\right )} \, dx\\ &=\int \left (-\frac {3 e^x}{(-3+x) \left (-12+4 x+e^x x\right )}+\frac {e^x x}{-12+4 x+e^x x}\right ) \, dx\\ &=-\left (3 \int \frac {e^x}{(-3+x) \left (-12+4 x+e^x x\right )} \, dx\right )+\int \frac {e^x x}{-12+4 x+e^x x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 21, normalized size = 1.31 \begin {gather*} -\log (3-x)+\log \left (12-4 x-e^x x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 23, normalized size = 1.44 \begin {gather*} -\log \left (x - 3\right ) + \log \relax (x) + \log \left (\frac {x e^{x} + 4 \, x - 12}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 17, normalized size = 1.06 \begin {gather*} \log \left (x e^{x} + 4 \, x - 12\right ) - \log \left (x - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 1.12
method | result | size |
norman | \(-\ln \left (x -3\right )+\ln \left ({\mathrm e}^{x} x +4 x -12\right )\) | \(18\) |
risch | \(-\ln \left (x -3\right )+\ln \relax (x )+\ln \left ({\mathrm e}^{x}+\frac {4 x -12}{x}\right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 23, normalized size = 1.44 \begin {gather*} -\log \left (x - 3\right ) + \log \relax (x) + \log \left (\frac {x e^{x} + 4 \, x - 12}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.17, size = 17, normalized size = 1.06 \begin {gather*} \ln \left (4\,x+x\,{\mathrm {e}}^x-12\right )-\ln \left (x-3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 19, normalized size = 1.19 \begin {gather*} \log {\relax (x )} - \log {\left (x - 3 \right )} + \log {\left (e^{x} + \frac {4 x - 12}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________