Optimal. Leaf size=23 \[ -25+\frac {9 x}{e^2 \left (e+e^5-x\right ) (1+x)} \]
________________________________________________________________________________________
Rubi [B] time = 0.21, antiderivative size = 50, normalized size of antiderivative = 2.17, number of steps used = 6, number of rules used = 4, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {6, 12, 6688, 894} \begin {gather*} \frac {9 \left (1+e^4\right )}{e \left (1+e+e^5\right ) \left (e \left (1+e^4\right )-x\right )}-\frac {9}{e^2 \left (1+e+e^5\right ) (x+1)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 894
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {9 e+9 e^5+9 x^2}{e^2 \left (e+e^5-x\right ) \left (-x-2 x^2-x^3+\left (e+e^5\right ) \left (1+2 x+x^2\right )\right )} \, dx\\ &=\frac {\int \frac {9 e+9 e^5+9 x^2}{\left (e+e^5-x\right ) \left (-x-2 x^2-x^3+\left (e+e^5\right ) \left (1+2 x+x^2\right )\right )} \, dx}{e^2}\\ &=\frac {\int \frac {9 \left (e+e^5+x^2\right )}{\left (e+e^5-x\right )^2 (1+x)^2} \, dx}{e^2}\\ &=\frac {9 \int \frac {e+e^5+x^2}{\left (e+e^5-x\right )^2 (1+x)^2} \, dx}{e^2}\\ &=\frac {9 \int \left (\frac {e+e^5}{\left (1+e+e^5\right ) \left (e+e^5-x\right )^2}+\frac {1}{\left (1+e+e^5\right ) (1+x)^2}\right ) \, dx}{e^2}\\ &=\frac {9 \left (1+e^4\right )}{e \left (1+e+e^5\right ) \left (e \left (1+e^4\right )-x\right )}-\frac {9}{e^2 \left (1+e+e^5\right ) (1+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 21, normalized size = 0.91 \begin {gather*} \frac {9 x}{e^2 \left (e+e^5-x\right ) (1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 27, normalized size = 1.17 \begin {gather*} \frac {9 \, x}{{\left (x + 1\right )} e^{7} + {\left (x + 1\right )} e^{3} - {\left (x^{2} + x\right )} e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 30, normalized size = 1.30 \begin {gather*} -\frac {9 \, x e^{\left (-2\right )}}{x^{2} - x e^{5} - x e + x - e^{5} - e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 23, normalized size = 1.00
method | result | size |
gosper | \(\frac {9 x \,{\mathrm e}^{-2}}{\left ({\mathrm e}^{5}+{\mathrm e}-x \right ) \left (x +1\right )}\) | \(23\) |
norman | \(\frac {9 x \,{\mathrm e}^{-2}}{\left ({\mathrm e}^{5}+{\mathrm e}-x \right ) \left (x +1\right )}\) | \(23\) |
risch | \(\frac {9 \,{\mathrm e}^{-2} x}{x \,{\mathrm e}^{5}+{\mathrm e}^{5}+x \,{\mathrm e}-x^{2}+{\mathrm e}-x}\) | \(29\) |
default | \(9 \,{\mathrm e}^{-2} \left (-\frac {{\mathrm e}^{5}+{\mathrm e}}{\left ({\mathrm e}^{5}+{\mathrm e}+1\right ) \left (-{\mathrm e}^{5}-{\mathrm e}+x \right )}-\frac {1}{\left ({\mathrm e}^{5}+{\mathrm e}+1\right ) \left (x +1\right )}\right )\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 28, normalized size = 1.22 \begin {gather*} -\frac {9 \, x e^{\left (-2\right )}}{x^{2} - x {\left (e^{5} + e - 1\right )} - e^{5} - e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.00, size = 20, normalized size = 0.87 \begin {gather*} \frac {9\,x\,{\mathrm {e}}^{-2}}{\left (x+1\right )\,\left (\mathrm {e}-x+{\mathrm {e}}^5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.14, size = 29, normalized size = 1.26 \begin {gather*} - \frac {9 x}{x^{2} e^{2} + x \left (- e^{7} - e^{3} + e^{2}\right ) - e^{7} - e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________