Optimal. Leaf size=26 \[ \left (x^2-\log (1+\log (x))\right ) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x^4-2 x^4 \log (x)+\left (5 x^2+x^4+\left (5 x^2+x^4\right ) \log (x)\right ) \log \left (5+x^2\right )+\left (2 x^2+2 x^2 \log (x)+\left (-5-x^2+\left (-5-x^2\right ) \log (x)\right ) \log \left (5+x^2\right )\right ) \log (1+\log (x))+\left (-5+9 x^2+2 x^4+\left (10 x^2+2 x^4\right ) \log (x)\right ) \log \left (5+x^2\right ) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{\left (5 x+x^3+\left (5 x+x^3\right ) \log (x)\right ) \log \left (5+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x^4-2 x^4 \log (x)+\left (5 x^2+x^4+\left (5 x^2+x^4\right ) \log (x)\right ) \log \left (5+x^2\right )+\left (2 x^2+2 x^2 \log (x)+\left (-5-x^2+\left (-5-x^2\right ) \log (x)\right ) \log \left (5+x^2\right )\right ) \log (1+\log (x))+\left (-5+9 x^2+2 x^4+\left (10 x^2+2 x^4\right ) \log (x)\right ) \log \left (5+x^2\right ) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{x \left (5+x^2\right ) (1+\log (x)) \log \left (5+x^2\right )} \, dx\\ &=\int \left (\frac {\left (-2 x^2+5 \log \left (5+x^2\right )+x^2 \log \left (5+x^2\right )\right ) \left (x^2-\log (1+\log (x))\right )}{x \left (5+x^2\right ) \log \left (5+x^2\right )}+\frac {\left (-1+2 x^2+2 x^2 \log (x)\right ) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{x (1+\log (x))}\right ) \, dx\\ &=\int \frac {\left (-2 x^2+5 \log \left (5+x^2\right )+x^2 \log \left (5+x^2\right )\right ) \left (x^2-\log (1+\log (x))\right )}{x \left (5+x^2\right ) \log \left (5+x^2\right )} \, dx+\int \frac {\left (-1+2 x^2+2 x^2 \log (x)\right ) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{x (1+\log (x))} \, dx\\ &=\int \left (\frac {-2 x^3+5 x \log \left (5+x^2\right )+x^3 \log \left (5+x^2\right )}{\left (5+x^2\right ) \log \left (5+x^2\right )}-\frac {\left (-2 x^2+5 \log \left (5+x^2\right )+x^2 \log \left (5+x^2\right )\right ) \log (1+\log (x))}{x \left (5+x^2\right ) \log \left (5+x^2\right )}\right ) \, dx+\int \left (-\frac {\log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{x (1+\log (x))}+\frac {2 x \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)}+\frac {2 x \log (x) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)}\right ) \, dx\\ &=2 \int \frac {x \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx+2 \int \frac {x \log (x) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx+\int \frac {-2 x^3+5 x \log \left (5+x^2\right )+x^3 \log \left (5+x^2\right )}{\left (5+x^2\right ) \log \left (5+x^2\right )} \, dx-\int \frac {\left (-2 x^2+5 \log \left (5+x^2\right )+x^2 \log \left (5+x^2\right )\right ) \log (1+\log (x))}{x \left (5+x^2\right ) \log \left (5+x^2\right )} \, dx-\int \frac {\log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{x (1+\log (x))} \, dx\\ &=2 \int \frac {x \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx+2 \int \frac {x \log (x) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx+\int \left (x-\frac {2 x^3}{\left (5+x^2\right ) \log \left (5+x^2\right )}\right ) \, dx-\int \frac {\left (1-\frac {2 x^2}{\left (5+x^2\right ) \log \left (5+x^2\right )}\right ) \log (1+\log (x))}{x} \, dx-\int \frac {\log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{x (1+\log (x))} \, dx\\ &=\frac {x^2}{2}-2 \int \frac {x^3}{\left (5+x^2\right ) \log \left (5+x^2\right )} \, dx+2 \int \frac {x \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx+2 \int \frac {x \log (x) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx-\int \left (\frac {\log (1+\log (x))}{x}-\frac {2 x \log (1+\log (x))}{\left (5+x^2\right ) \log \left (5+x^2\right )}\right ) \, dx-\int \frac {\log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{x (1+\log (x))} \, dx\\ &=\frac {x^2}{2}+2 \int \frac {x \log (1+\log (x))}{\left (5+x^2\right ) \log \left (5+x^2\right )} \, dx+2 \int \frac {x \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx+2 \int \frac {x \log (x) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx-\int \frac {\log (1+\log (x))}{x} \, dx-\int \frac {\log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{x (1+\log (x))} \, dx-\operatorname {Subst}\left (\int \frac {x}{(5+x) \log (5+x)} \, dx,x,x^2\right )\\ &=\frac {x^2}{2}+2 \int \left (-\frac {\log (1+\log (x))}{2 \left (i \sqrt {5}-x\right ) \log \left (5+x^2\right )}+\frac {\log (1+\log (x))}{2 \left (i \sqrt {5}+x\right ) \log \left (5+x^2\right )}\right ) \, dx+2 \int \frac {x \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx+2 \int \frac {x \log (x) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx-\int \frac {\log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{x (1+\log (x))} \, dx-\operatorname {Subst}\left (\int \frac {-5+x}{x \log (x)} \, dx,x,5+x^2\right )-\operatorname {Subst}(\int \log (1+x) \, dx,x,\log (x))\\ &=\frac {x^2}{2}+2 \int \frac {x \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx+2 \int \frac {x \log (x) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx-\int \frac {\log (1+\log (x))}{\left (i \sqrt {5}-x\right ) \log \left (5+x^2\right )} \, dx+\int \frac {\log (1+\log (x))}{\left (i \sqrt {5}+x\right ) \log \left (5+x^2\right )} \, dx-\int \frac {\log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{x (1+\log (x))} \, dx-\operatorname {Subst}\left (\int \left (\frac {1}{\log (x)}-\frac {5}{x \log (x)}\right ) \, dx,x,5+x^2\right )-\operatorname {Subst}(\int \log (x) \, dx,x,1+\log (x))\\ &=\frac {x^2}{2}+\log (x)-(1+\log (x)) \log (1+\log (x))+2 \int \frac {x \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx+2 \int \frac {x \log (x) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx+5 \operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,5+x^2\right )-\int \frac {\log (1+\log (x))}{\left (i \sqrt {5}-x\right ) \log \left (5+x^2\right )} \, dx+\int \frac {\log (1+\log (x))}{\left (i \sqrt {5}+x\right ) \log \left (5+x^2\right )} \, dx-\int \frac {\log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{x (1+\log (x))} \, dx-\operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,5+x^2\right )\\ &=\frac {x^2}{2}+\log (x)-(1+\log (x)) \log (1+\log (x))-\text {li}\left (5+x^2\right )+2 \int \frac {x \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx+2 \int \frac {x \log (x) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx+5 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (5+x^2\right )\right )-\int \frac {\log (1+\log (x))}{\left (i \sqrt {5}-x\right ) \log \left (5+x^2\right )} \, dx+\int \frac {\log (1+\log (x))}{\left (i \sqrt {5}+x\right ) \log \left (5+x^2\right )} \, dx-\int \frac {\log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{x (1+\log (x))} \, dx\\ &=\frac {x^2}{2}+\log (x)-(1+\log (x)) \log (1+\log (x))+5 \log \left (\log \left (5+x^2\right )\right )-\text {li}\left (5+x^2\right )+2 \int \frac {x \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx+2 \int \frac {x \log (x) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{1+\log (x)} \, dx-\int \frac {\log (1+\log (x))}{\left (i \sqrt {5}-x\right ) \log \left (5+x^2\right )} \, dx+\int \frac {\log (1+\log (x))}{\left (i \sqrt {5}+x\right ) \log \left (5+x^2\right )} \, dx-\int \frac {\log \left (\frac {x}{2 \log \left (5+x^2\right )}\right )}{x (1+\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 26, normalized size = 1.00 \begin {gather*} \left (x^2-\log (1+\log (x))\right ) \log \left (\frac {x}{2 \log \left (5+x^2\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 36, normalized size = 1.38 \begin {gather*} x^{2} \log \left (\frac {x}{2 \, \log \left (x^{2} + 5\right )}\right ) - \log \left (\frac {x}{2 \, \log \left (x^{2} + 5\right )}\right ) \log \left (\log \relax (x) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 38, normalized size = 1.46 \begin {gather*} x^{2} \log \relax (x) - {\left (x^{2} - \log \left (\log \relax (x) + 1\right )\right )} \log \left (2 \, \log \left (x^{2} + 5\right )\right ) - \log \relax (x) \log \left (\log \relax (x) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.22, size = 299, normalized size = 11.50
method | result | size |
risch | \(\left (-x^{2}+\ln \left (\ln \relax (x )+1\right )\right ) \ln \left (\ln \left (x^{2}+5\right )\right )-\ln \relax (x ) \ln \left (\ln \relax (x )+1\right )+x^{2} \ln \relax (x )+\frac {i \pi \ln \left (\ln \relax (x )+1\right ) \mathrm {csgn}\left (\frac {i x}{\ln \left (x^{2}+5\right )}\right )^{3}}{2}+\frac {i \pi \ln \left (\ln \relax (x )+1\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{\ln \left (x^{2}+5\right )}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \left (x^{2}+5\right )}\right )}{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i x}{\ln \left (x^{2}+5\right )}\right )^{3}}{2}-\frac {i \pi \ln \left (\ln \relax (x )+1\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (x^{2}+5\right )}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \left (x^{2}+5\right )}\right )^{2}}{2}-\frac {i \pi \ln \left (\ln \relax (x )+1\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x}{\ln \left (x^{2}+5\right )}\right )^{2}}{2}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{\ln \left (x^{2}+5\right )}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \left (x^{2}+5\right )}\right )^{2}}{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{\ln \left (x^{2}+5\right )}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \left (x^{2}+5\right )}\right )}{2}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x}{\ln \left (x^{2}+5\right )}\right )^{2}}{2}-x^{2} \ln \relax (2)+\ln \relax (2) \ln \left (\ln \relax (x )+1\right )\) | \(299\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 47, normalized size = 1.81 \begin {gather*} -x^{2} \log \relax (2) + x^{2} \log \relax (x) + {\left (\log \relax (2) - \log \relax (x)\right )} \log \left (\log \relax (x) + 1\right ) - {\left (x^{2} - \log \left (\log \relax (x) + 1\right )\right )} \log \left (\log \left (x^{2} + 5\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.51, size = 26, normalized size = 1.00 \begin {gather*} \left (\ln \left (\ln \relax (x)+1\right )-x^2\right )\,\left (\ln \left (\ln \left (x^2+5\right )\right )+\ln \relax (2)-\ln \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.26, size = 20, normalized size = 0.77 \begin {gather*} \left (x^{2} - \log {\left (\log {\relax (x )} + 1 \right )}\right ) \log {\left (\frac {x}{2 \log {\left (x^{2} + 5 \right )}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________