Optimal. Leaf size=27 \[ e^{\frac {(4-x) x \left (9+\frac {4}{x}+x^2\right )}{4 e^4}}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 31, normalized size of antiderivative = 1.15, number of steps used = 3, number of rules used = 2, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {12, 6706} \begin {gather*} e^{\frac {-x^4+4 x^3-9 x^2+32 x+16}{4 e^4}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (2 e^4+e^{\frac {16+32 x-9 x^2+4 x^3-x^4}{4 e^4}} \left (16-9 x+6 x^2-2 x^3\right )\right ) \, dx}{2 e^4}\\ &=x+\frac {\int e^{\frac {16+32 x-9 x^2+4 x^3-x^4}{4 e^4}} \left (16-9 x+6 x^2-2 x^3\right ) \, dx}{2 e^4}\\ &=e^{\frac {16+32 x-9 x^2+4 x^3-x^4}{4 e^4}}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 43, normalized size = 1.59 \begin {gather*} e^{\frac {4}{e^4}+\frac {8 x}{e^4}-\frac {9 x^2}{4 e^4}+\frac {x^3}{e^4}-\frac {x^4}{4 e^4}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 25, normalized size = 0.93 \begin {gather*} x + e^{\left (-\frac {1}{4} \, {\left (x^{4} - 4 \, x^{3} + 9 \, x^{2} - 32 \, x - 16\right )} e^{\left (-4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 40, normalized size = 1.48 \begin {gather*} {\left (x e^{4} + e^{\left (-\frac {1}{4} \, x^{4} e^{\left (-4\right )} + x^{3} e^{\left (-4\right )} - \frac {9}{4} \, x^{2} e^{\left (-4\right )} + 8 \, x e^{\left (-4\right )} + 4 \, e^{\left (-4\right )} + 4\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 19, normalized size = 0.70
method | result | size |
risch | \(x +{\mathrm e}^{-\frac {\left (x -4\right ) \left (x^{3}+9 x +4\right ) {\mathrm e}^{-4}}{4}}\) | \(19\) |
norman | \(x +{\mathrm e}^{\frac {\left (-x^{4}+4 x^{3}-9 x^{2}+32 x +16\right ) {\mathrm e}^{-4}}{4}}\) | \(30\) |
default | \(\frac {{\mathrm e}^{-4} \left (2 \,{\mathrm e}^{4} {\mathrm e}^{\frac {\left (-x^{4}+4 x^{3}-9 x^{2}+32 x +16\right ) {\mathrm e}^{-4}}{4}}+2 x \,{\mathrm e}^{4}\right )}{2}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 40, normalized size = 1.48 \begin {gather*} {\left (x e^{4} + e^{\left (-\frac {1}{4} \, x^{4} e^{\left (-4\right )} + x^{3} e^{\left (-4\right )} - \frac {9}{4} \, x^{2} e^{\left (-4\right )} + 8 \, x e^{\left (-4\right )} + 4 \, e^{\left (-4\right )} + 4\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 33, normalized size = 1.22 \begin {gather*} x+{\mathrm {e}}^{-\frac {{\mathrm {e}}^{-4}\,x^4}{4}+{\mathrm {e}}^{-4}\,x^3-\frac {9\,{\mathrm {e}}^{-4}\,x^2}{4}+8\,{\mathrm {e}}^{-4}\,x+4\,{\mathrm {e}}^{-4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 26, normalized size = 0.96 \begin {gather*} x + e^{\frac {- \frac {x^{4}}{4} + x^{3} - \frac {9 x^{2}}{4} + 8 x + 4}{e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________