Optimal. Leaf size=14 \[ 5-\frac {x}{3}+\log \left (\log \left (x+x^x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3+x^x (3+3 \log (x))+\left (-x-x^x\right ) \log \left (x+x^x\right )}{\left (3 x+3 x^x\right ) \log \left (x+x^x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3+x^x (3+3 \log (x))+\left (-x-x^x\right ) \log \left (x+x^x\right )}{3 \left (x+x^x\right ) \log \left (x+x^x\right )} \, dx\\ &=\frac {1}{3} \int \frac {3+x^x (3+3 \log (x))+\left (-x-x^x\right ) \log \left (x+x^x\right )}{\left (x+x^x\right ) \log \left (x+x^x\right )} \, dx\\ &=\frac {1}{3} \int \left (-\frac {3 (-1+x+x \log (x))}{\left (x+x^x\right ) \log \left (x+x^x\right )}+\frac {3+3 \log (x)-\log \left (x+x^x\right )}{\log \left (x+x^x\right )}\right ) \, dx\\ &=\frac {1}{3} \int \frac {3+3 \log (x)-\log \left (x+x^x\right )}{\log \left (x+x^x\right )} \, dx-\int \frac {-1+x+x \log (x)}{\left (x+x^x\right ) \log \left (x+x^x\right )} \, dx\\ &=\frac {1}{3} \int \left (-1+\frac {3 (1+\log (x))}{\log \left (x+x^x\right )}\right ) \, dx-\int \left (-\frac {1}{\left (x+x^x\right ) \log \left (x+x^x\right )}+\frac {x}{\left (x+x^x\right ) \log \left (x+x^x\right )}+\frac {x \log (x)}{\left (x+x^x\right ) \log \left (x+x^x\right )}\right ) \, dx\\ &=-\frac {x}{3}+\int \frac {1}{\left (x+x^x\right ) \log \left (x+x^x\right )} \, dx-\int \frac {x}{\left (x+x^x\right ) \log \left (x+x^x\right )} \, dx-\int \frac {x \log (x)}{\left (x+x^x\right ) \log \left (x+x^x\right )} \, dx+\int \frac {1+\log (x)}{\log \left (x+x^x\right )} \, dx\\ &=-\frac {x}{3}+\int \left (\frac {1}{\log \left (x+x^x\right )}+\frac {\log (x)}{\log \left (x+x^x\right )}\right ) \, dx+\int \frac {1}{\left (x+x^x\right ) \log \left (x+x^x\right )} \, dx-\int \frac {x}{\left (x+x^x\right ) \log \left (x+x^x\right )} \, dx-\int \frac {x \log (x)}{\left (x+x^x\right ) \log \left (x+x^x\right )} \, dx\\ &=-\frac {x}{3}+\int \frac {1}{\log \left (x+x^x\right )} \, dx+\int \frac {1}{\left (x+x^x\right ) \log \left (x+x^x\right )} \, dx-\int \frac {x}{\left (x+x^x\right ) \log \left (x+x^x\right )} \, dx+\int \frac {\log (x)}{\log \left (x+x^x\right )} \, dx-\int \frac {x \log (x)}{\left (x+x^x\right ) \log \left (x+x^x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 17, normalized size = 1.21 \begin {gather*} \frac {1}{3} \left (-x+3 \log \left (\log \left (x+x^x\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 11, normalized size = 0.79 \begin {gather*} -\frac {1}{3} \, x + \log \left (\log \left (x + x^{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.74, size = 11, normalized size = 0.79 \begin {gather*} -\frac {1}{3} \, x + \log \left (\log \left (x + x^{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 12, normalized size = 0.86
method | result | size |
risch | \(-\frac {x}{3}+\ln \left (\ln \left (x^{x}+x \right )\right )\) | \(12\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 11, normalized size = 0.79 \begin {gather*} -\frac {1}{3} \, x + \log \left (\log \left (x + x^{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.46, size = 11, normalized size = 0.79 \begin {gather*} \ln \left (\ln \left (x+x^x\right )\right )-\frac {x}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.76, size = 14, normalized size = 1.00 \begin {gather*} - \frac {x}{3} + \log {\left (\log {\left (x + e^{x \log {\relax (x )}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________