Optimal. Leaf size=18 \[ e^{\frac {1}{\log ^4\left ((2-x) x \left (x^4+\log (36)\right )\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 5.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {1}{\log ^4\left (2 x^5-x^6+\left (2 x-x^2\right ) \log (36)\right )}} \left (40 x^4-24 x^5+(8-8 x) \log (36)\right )}{\left (-2 x^5+x^6+\left (-2 x+x^2\right ) \log (36)\right ) \log ^5\left (2 x^5-x^6+\left (2 x-x^2\right ) \log (36)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}} \left (-5 x^4+3 x^5-\log (36)+x \log (36)\right )}{(2-x) x \left (x^4+\log (36)\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx\\ &=8 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}} \left (-5 x^4+3 x^5-\log (36)+x \log (36)\right )}{(2-x) x \left (x^4+\log (36)\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx\\ &=8 \int \left (-\frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{2 (-2+x) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}-\frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{2 x \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}-\frac {2 e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}} x^3}{\left (x^4+\log (36)\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}\right ) \, dx\\ &=-\left (4 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{(-2+x) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx\right )-4 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{x \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx-16 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}} x^3}{\left (x^4+\log (36)\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx\\ &=-\left (4 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{(-2+x) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx\right )-4 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{x \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx-16 \int \left (\frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}} x}{2 \left (x^2-i \sqrt {\log (36)}\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}+\frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}} x}{2 \left (x^2+i \sqrt {\log (36)}\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}\right ) \, dx\\ &=-\left (4 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{(-2+x) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx\right )-4 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{x \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx-8 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}} x}{\left (x^2-i \sqrt {\log (36)}\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx-8 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}} x}{\left (x^2+i \sqrt {\log (36)}\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx\\ &=-\left (4 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{(-2+x) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx\right )-4 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{x \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx-8 \int \left (-\frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{2 \left (-x+\sqrt [4]{-\log (36)}\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}+\frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{2 \left (x+\sqrt [4]{-\log (36)}\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}\right ) \, dx-8 \int \left (-\frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{2 \left (-x-(-1)^{3/4} \sqrt [4]{\log (36)}\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}+\frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{2 \left (x-(-1)^{3/4} \sqrt [4]{\log (36)}\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}\right ) \, dx\\ &=-\left (4 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{(-2+x) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx\right )-4 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{x \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx+4 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{\left (-x+\sqrt [4]{-\log (36)}\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx-4 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{\left (x+\sqrt [4]{-\log (36)}\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx+4 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{\left (-x-(-1)^{3/4} \sqrt [4]{\log (36)}\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx-4 \int \frac {e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}}}{\left (x-(-1)^{3/4} \sqrt [4]{\log (36)}\right ) \log ^5\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.88, size = 17, normalized size = 0.94 \begin {gather*} e^{\frac {1}{\log ^4\left (-\left ((-2+x) x \left (x^4+\log (36)\right )\right )\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 26, normalized size = 1.44 \begin {gather*} e^{\left (\frac {1}{\log \left (-x^{6} + 2 \, x^{5} - 2 \, {\left (x^{2} - 2 \, x\right )} \log \relax (6)\right )^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 27, normalized size = 1.50 \begin {gather*} e^{\left (\frac {1}{\log \left (-x^{6} + 2 \, x^{5} - 2 \, x^{2} \log \relax (6) + 4 \, x \log \relax (6)\right )^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 32, normalized size = 1.78
method | result | size |
risch | \({\mathrm e}^{\frac {1}{\ln \left (2 \left (-x^{2}+2 x \right ) \left (\ln \relax (2)+\ln \relax (3)\right )-x^{6}+2 x^{5}\right )^{4}}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.76, size = 1148, normalized size = 63.78 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.84, size = 27, normalized size = 1.50 \begin {gather*} {\mathrm {e}}^{\frac {1}{{\ln \left (-x^6+2\,x^5-2\,\ln \relax (6)\,x^2+4\,\ln \relax (6)\,x\right )}^4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.65, size = 26, normalized size = 1.44 \begin {gather*} e^{\frac {1}{\log {\left (- x^{6} + 2 x^{5} + \left (- 2 x^{2} + 4 x\right ) \log {\relax (6 )} \right )}^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________