Optimal. Leaf size=28 \[ -4+\frac {\log (x) \left (-4 e^{-x^3}-\log (\log (4))\right )}{\log (3-x)} \]
________________________________________________________________________________________
Rubi [F] time = 3.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x^3} \left ((12-4 x) \log (3-x)+\left (4 x+\left (-36 x^3+12 x^4\right ) \log (3-x)\right ) \log (x)+\left (e^{x^3} (3-x) \log (3-x)+e^{x^3} x \log (x)\right ) \log (\log (4))\right )}{\left (-3 x+x^2\right ) \log ^2(3-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x^3} \left ((12-4 x) \log (3-x)+\left (4 x+\left (-36 x^3+12 x^4\right ) \log (3-x)\right ) \log (x)+\left (e^{x^3} (3-x) \log (3-x)+e^{x^3} x \log (x)\right ) \log (\log (4))\right )}{(-3+x) x \log ^2(3-x)} \, dx\\ &=\int \frac {e^{-x^3} \left (-\left ((-3+x) \log (3-x) \left (-4+12 x^3 \log (x)-e^{x^3} \log (\log (4))\right )\right )-x \log (x) \left (4+e^{x^3} \log (\log (4))\right )\right )}{(3-x) x \log ^2(3-x)} \, dx\\ &=\int \left (\frac {4 e^{-x^3} \left (3 \log (3-x)-x \log (3-x)+x \log (x)-9 x^3 \log (3-x) \log (x)+3 x^4 \log (3-x) \log (x)\right )}{(-3+x) x \log ^2(3-x)}-\frac {(-3 \log (3-x)+x \log (3-x)-x \log (x)) \log (\log (4))}{(-3+x) x \log ^2(3-x)}\right ) \, dx\\ &=4 \int \frac {e^{-x^3} \left (3 \log (3-x)-x \log (3-x)+x \log (x)-9 x^3 \log (3-x) \log (x)+3 x^4 \log (3-x) \log (x)\right )}{(-3+x) x \log ^2(3-x)} \, dx-\log (\log (4)) \int \frac {-3 \log (3-x)+x \log (3-x)-x \log (x)}{(-3+x) x \log ^2(3-x)} \, dx\\ &=-\frac {4 e^{-x^3} \left (3 x^3 \log (3-x) \log (x)-x^4 \log (3-x) \log (x)\right )}{(3-x) x^3 \log ^2(3-x)}-\log (\log (4)) \int \frac {\frac {\log (3-x)}{x}-\frac {\log (x)}{-3+x}}{\log ^2(3-x)} \, dx\\ &=-\frac {4 e^{-x^3} \left (3 x^3 \log (3-x) \log (x)-x^4 \log (3-x) \log (x)\right )}{(3-x) x^3 \log ^2(3-x)}-\log (\log (4)) \int \left (\frac {1}{x \log (3-x)}-\frac {\log (x)}{(-3+x) \log ^2(3-x)}\right ) \, dx\\ &=-\frac {4 e^{-x^3} \left (3 x^3 \log (3-x) \log (x)-x^4 \log (3-x) \log (x)\right )}{(3-x) x^3 \log ^2(3-x)}-\log (\log (4)) \int \frac {1}{x \log (3-x)} \, dx+\log (\log (4)) \int \frac {\log (x)}{(-3+x) \log ^2(3-x)} \, dx\\ &=-\frac {4 e^{-x^3} \left (3 x^3 \log (3-x) \log (x)-x^4 \log (3-x) \log (x)\right )}{(3-x) x^3 \log ^2(3-x)}-\log (\log (4)) \int \frac {1}{x \log (3-x)} \, dx+\log (\log (4)) \operatorname {Subst}\left (\int \frac {\log (3-x)}{x \log ^2(x)} \, dx,x,3-x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 25, normalized size = 0.89 \begin {gather*} -\frac {\log (x) \left (4 e^{-x^3}+\log (\log (4))\right )}{\log (3-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 33, normalized size = 1.18 \begin {gather*} -\frac {{\left (e^{\left (x^{3}\right )} \log \relax (x) \log \left (2 \, \log \relax (2)\right ) + 4 \, \log \relax (x)\right )} e^{\left (-x^{3}\right )}}{\log \left (-x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 32, normalized size = 1.14 \begin {gather*} -\frac {4 \, e^{\left (-x^{3}\right )} \log \relax (x) + \log \relax (2) \log \relax (x) + \log \relax (x) \log \left (\log \relax (2)\right )}{\log \left (-x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 36, normalized size = 1.29
method | result | size |
risch | \(-\frac {\ln \relax (x ) \left ({\mathrm e}^{x^{3}} \ln \relax (2)+{\mathrm e}^{x^{3}} \ln \left (\ln \relax (2)\right )+4\right ) {\mathrm e}^{-x^{3}}}{\ln \left (3-x \right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 34, normalized size = 1.21 \begin {gather*} -\frac {{\left ({\left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )} e^{\left (x^{3}\right )} \log \relax (x) + 4 \, \log \relax (x)\right )} e^{\left (-x^{3}\right )}}{\log \left (-x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int -\frac {{\mathrm {e}}^{-x^3}\,\left (\ln \left (2\,\ln \relax (2)\right )\,\left ({\mathrm {e}}^{x^3}\,\ln \left (3-x\right )\,\left (x-3\right )-x\,{\mathrm {e}}^{x^3}\,\ln \relax (x)\right )+\ln \left (3-x\right )\,\left (4\,x-12\right )-\ln \relax (x)\,\left (4\,x-\ln \left (3-x\right )\,\left (36\,x^3-12\,x^4\right )\right )\right )}{{\ln \left (3-x\right )}^2\,\left (3\,x-x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 36, normalized size = 1.29 \begin {gather*} \frac {- \log {\relax (2 )} \log {\relax (x )} - \log {\relax (x )} \log {\left (\log {\relax (2 )} \right )}}{\log {\left (3 - x \right )}} - \frac {4 e^{- x^{3}} \log {\relax (x )}}{\log {\left (3 - x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________