Optimal. Leaf size=26 \[ \frac {1}{2} \left (-x+\log \left (x \left (e^x+x\right )\right )\right ) \left (-1-x+\log ^2(\log (x))\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-2 x-x^2+2 x^3+e^x \left (-1-x+x^2\right )\right ) \log (x)+\left (-e^x x-x^2\right ) \log (x) \log \left (e^x x+x^2\right )+\left (-2 e^x x-2 x^2+\left (2 e^x+2 x\right ) \log \left (e^x x+x^2\right )\right ) \log (\log (x))+\left (e^x+2 x-x^2\right ) \log (x) \log ^2(\log (x))}{\left (2 e^x x+2 x^2\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-2 x-x^2+2 x^3+e^x \left (-1-x+x^2\right )\right ) \log (x)+\left (-e^x x-x^2\right ) \log (x) \log \left (e^x x+x^2\right )+\left (-2 e^x x-2 x^2+\left (2 e^x+2 x\right ) \log \left (e^x x+x^2\right )\right ) \log (\log (x))+\left (e^x+2 x-x^2\right ) \log (x) \log ^2(\log (x))}{2 x \left (e^x+x\right ) \log (x)} \, dx\\ &=\frac {1}{2} \int \frac {\left (-2 x-x^2+2 x^3+e^x \left (-1-x+x^2\right )\right ) \log (x)+\left (-e^x x-x^2\right ) \log (x) \log \left (e^x x+x^2\right )+\left (-2 e^x x-2 x^2+\left (2 e^x+2 x\right ) \log \left (e^x x+x^2\right )\right ) \log (\log (x))+\left (e^x+2 x-x^2\right ) \log (x) \log ^2(\log (x))}{x \left (e^x+x\right ) \log (x)} \, dx\\ &=\frac {1}{2} \int \frac {-\frac {2 \left (x-\log \left (x \left (e^x+x\right )\right )\right ) \log (\log (x))}{\log (x)}-\frac {e^x+2 x+e^x x+x^2-e^x x^2-2 x^3+x \left (e^x+x\right ) \log \left (x \left (e^x+x\right )\right )+\left (-e^x+(-2+x) x\right ) \log ^2(\log (x))}{e^x+x}}{x} \, dx\\ &=\frac {1}{2} \int \left (\frac {(-1+x) \left (1+x-\log ^2(\log (x))\right )}{e^x+x}+\frac {-\log (x)-x \log (x)+x^2 \log (x)-x \log (x) \log \left (x \left (e^x+x\right )\right )-2 x \log (\log (x))+2 \log \left (x \left (e^x+x\right )\right ) \log (\log (x))+\log (x) \log ^2(\log (x))}{x \log (x)}\right ) \, dx\\ &=\frac {1}{2} \int \frac {(-1+x) \left (1+x-\log ^2(\log (x))\right )}{e^x+x} \, dx+\frac {1}{2} \int \frac {-\log (x)-x \log (x)+x^2 \log (x)-x \log (x) \log \left (x \left (e^x+x\right )\right )-2 x \log (\log (x))+2 \log \left (x \left (e^x+x\right )\right ) \log (\log (x))+\log (x) \log ^2(\log (x))}{x \log (x)} \, dx\\ &=\frac {1}{2} \int \left (\frac {-1-x+x^2-x \log \left (x \left (e^x+x\right )\right )}{x}-\frac {2 \left (x-\log \left (x \left (e^x+x\right )\right )\right ) \log (\log (x))}{x \log (x)}+\frac {\log ^2(\log (x))}{x}\right ) \, dx+\frac {1}{2} \int \left (-\frac {1+x-\log ^2(\log (x))}{e^x+x}+\frac {x \left (1+x-\log ^2(\log (x))\right )}{e^x+x}\right ) \, dx\\ &=\frac {1}{2} \int \frac {-1-x+x^2-x \log \left (x \left (e^x+x\right )\right )}{x} \, dx+\frac {1}{2} \int \frac {\log ^2(\log (x))}{x} \, dx-\frac {1}{2} \int \frac {1+x-\log ^2(\log (x))}{e^x+x} \, dx+\frac {1}{2} \int \frac {x \left (1+x-\log ^2(\log (x))\right )}{e^x+x} \, dx-\int \frac {\left (x-\log \left (x \left (e^x+x\right )\right )\right ) \log (\log (x))}{x \log (x)} \, dx\\ &=\frac {1}{2} \int \left (\frac {-1-x+x^2}{x}-\log \left (e^x x+x^2\right )\right ) \, dx-\frac {1}{2} \int \left (\frac {1}{e^x+x}+\frac {x}{e^x+x}-\frac {\log ^2(\log (x))}{e^x+x}\right ) \, dx+\frac {1}{2} \int \left (\frac {x}{e^x+x}+\frac {x^2}{e^x+x}-\frac {x \log ^2(\log (x))}{e^x+x}\right ) \, dx+\frac {1}{2} \operatorname {Subst}\left (\int \log ^2(x) \, dx,x,\log (x)\right )-\int \left (\frac {\log (\log (x))}{\log (x)}-\frac {\log \left (e^x x+x^2\right ) \log (\log (x))}{x \log (x)}\right ) \, dx\\ &=\frac {1}{2} \log (x) \log ^2(\log (x))-\frac {1}{2} \int \frac {1}{e^x+x} \, dx+\frac {1}{2} \int \frac {x^2}{e^x+x} \, dx+\frac {1}{2} \int \frac {-1-x+x^2}{x} \, dx-\frac {1}{2} \int \log \left (e^x x+x^2\right ) \, dx+\frac {1}{2} \int \frac {\log ^2(\log (x))}{e^x+x} \, dx-\frac {1}{2} \int \frac {x \log ^2(\log (x))}{e^x+x} \, dx-\int \frac {\log (\log (x))}{\log (x)} \, dx+\int \frac {\log \left (e^x x+x^2\right ) \log (\log (x))}{x \log (x)} \, dx-\operatorname {Subst}(\int \log (x) \, dx,x,\log (x))\\ &=\log (x)-\frac {1}{2} x \log \left (e^x x+x^2\right )-\log (x) \log (\log (x))+\frac {1}{2} \log (x) \log ^2(\log (x))-\frac {1}{2} \int \frac {1}{e^x+x} \, dx+\frac {1}{2} \int \frac {x^2}{e^x+x} \, dx+\frac {1}{2} \int \left (-1-\frac {1}{x}+x\right ) \, dx+\frac {1}{2} \int \frac {2 x+e^x (1+x)}{e^x+x} \, dx+\frac {1}{2} \int \frac {\log ^2(\log (x))}{e^x+x} \, dx-\frac {1}{2} \int \frac {x \log ^2(\log (x))}{e^x+x} \, dx-\int \frac {\log (\log (x))}{\log (x)} \, dx+\int \frac {\log \left (e^x x+x^2\right ) \log (\log (x))}{x \log (x)} \, dx\\ &=-\frac {x}{2}+\frac {x^2}{4}+\frac {\log (x)}{2}-\frac {1}{2} x \log \left (e^x x+x^2\right )-\log (x) \log (\log (x))+\frac {1}{2} \log (x) \log ^2(\log (x))-\frac {1}{2} \int \frac {1}{e^x+x} \, dx+\frac {1}{2} \int \frac {x^2}{e^x+x} \, dx+\frac {1}{2} \int \left (1+x-\frac {(-1+x) x}{e^x+x}\right ) \, dx+\frac {1}{2} \int \frac {\log ^2(\log (x))}{e^x+x} \, dx-\frac {1}{2} \int \frac {x \log ^2(\log (x))}{e^x+x} \, dx-\int \frac {\log (\log (x))}{\log (x)} \, dx+\int \frac {\log \left (e^x x+x^2\right ) \log (\log (x))}{x \log (x)} \, dx\\ &=\frac {x^2}{2}+\frac {\log (x)}{2}-\frac {1}{2} x \log \left (e^x x+x^2\right )-\log (x) \log (\log (x))+\frac {1}{2} \log (x) \log ^2(\log (x))-\frac {1}{2} \int \frac {1}{e^x+x} \, dx-\frac {1}{2} \int \frac {(-1+x) x}{e^x+x} \, dx+\frac {1}{2} \int \frac {x^2}{e^x+x} \, dx+\frac {1}{2} \int \frac {\log ^2(\log (x))}{e^x+x} \, dx-\frac {1}{2} \int \frac {x \log ^2(\log (x))}{e^x+x} \, dx-\int \frac {\log (\log (x))}{\log (x)} \, dx+\int \frac {\log \left (e^x x+x^2\right ) \log (\log (x))}{x \log (x)} \, dx\\ &=\frac {x^2}{2}+\frac {\log (x)}{2}-\frac {1}{2} x \log \left (e^x x+x^2\right )-\log (x) \log (\log (x))+\frac {1}{2} \log (x) \log ^2(\log (x))-\frac {1}{2} \int \frac {1}{e^x+x} \, dx+\frac {1}{2} \int \frac {x^2}{e^x+x} \, dx-\frac {1}{2} \int \left (-\frac {x}{e^x+x}+\frac {x^2}{e^x+x}\right ) \, dx+\frac {1}{2} \int \frac {\log ^2(\log (x))}{e^x+x} \, dx-\frac {1}{2} \int \frac {x \log ^2(\log (x))}{e^x+x} \, dx-\int \frac {\log (\log (x))}{\log (x)} \, dx+\int \frac {\log \left (e^x x+x^2\right ) \log (\log (x))}{x \log (x)} \, dx\\ &=\frac {x^2}{2}+\frac {\log (x)}{2}-\frac {1}{2} x \log \left (e^x x+x^2\right )-\log (x) \log (\log (x))+\frac {1}{2} \log (x) \log ^2(\log (x))-\frac {1}{2} \int \frac {1}{e^x+x} \, dx+\frac {1}{2} \int \frac {x}{e^x+x} \, dx+\frac {1}{2} \int \frac {\log ^2(\log (x))}{e^x+x} \, dx-\frac {1}{2} \int \frac {x \log ^2(\log (x))}{e^x+x} \, dx-\int \frac {\log (\log (x))}{\log (x)} \, dx+\int \frac {\log \left (e^x x+x^2\right ) \log (\log (x))}{x \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 51, normalized size = 1.96 \begin {gather*} \frac {1}{2} \left (x+x^2-\log (x)-\log \left (e^x+x\right )-x \log \left (x \left (e^x+x\right )\right )-\left (x-\log \left (x \left (e^x+x\right )\right )\right ) \log ^2(\log (x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 43, normalized size = 1.65 \begin {gather*} -\frac {1}{2} \, {\left (x - \log \left (x^{2} + x e^{x}\right )\right )} \log \left (\log \relax (x)\right )^{2} + \frac {1}{2} \, x^{2} - \frac {1}{2} \, {\left (x + 1\right )} \log \left (x^{2} + x e^{x}\right ) + \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 62, normalized size = 2.38 \begin {gather*} -\frac {1}{2} \, x \log \left (\log \relax (x)\right )^{2} + \frac {1}{2} \, \log \left (x + e^{x}\right ) \log \left (\log \relax (x)\right )^{2} + \frac {1}{2} \, \log \relax (x) \log \left (\log \relax (x)\right )^{2} + \frac {1}{2} \, x^{2} - \frac {1}{2} \, x \log \left (x + e^{x}\right ) - \frac {1}{2} \, x \log \relax (x) + \frac {1}{2} \, x - \frac {1}{2} \, \log \left (x + e^{x}\right ) - \frac {1}{2} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.13, size = 252, normalized size = 9.69
method | result | size |
risch | \(\left (\frac {\ln \left (\ln \relax (x )\right )^{2}}{2}-\frac {x}{2}\right ) \ln \left ({\mathrm e}^{x}+x \right )-\frac {x \ln \left (\ln \relax (x )\right )^{2}}{2}+\frac {\ln \relax (x ) \ln \left (\ln \relax (x )\right )^{2}}{2}+\frac {i x \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+x \right )\right )}{4}+\frac {i \ln \left (\ln \relax (x )\right )^{2} \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+x \right )\right )^{2}}{4}+\frac {i \ln \left (\ln \relax (x )\right )^{2} \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+x \right )\right )^{2}}{4}-\frac {i \ln \left (\ln \relax (x )\right )^{2} \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+x \right )\right )}{4}-\frac {x \ln \relax (x )}{2}+\frac {i x \pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+x \right )\right )^{3}}{4}-\frac {i x \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+x \right )\right )^{2}}{4}-\frac {i x \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+x \right )\right )^{2}}{4}-\frac {i \ln \left (\ln \relax (x )\right )^{2} \pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+x \right )\right )^{3}}{4}+\frac {x^{2}}{2}-\frac {\ln \relax (x )}{2}+\frac {x}{2}-\frac {\ln \left ({\mathrm e}^{x}+x \right )}{2}\) | \(252\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 46, normalized size = 1.77 \begin {gather*} -\frac {1}{2} \, {\left (x - \log \relax (x)\right )} \log \left (\log \relax (x)\right )^{2} + \frac {1}{2} \, x^{2} + \frac {1}{2} \, {\left (\log \left (\log \relax (x)\right )^{2} - x - 1\right )} \log \left (x + e^{x}\right ) - \frac {1}{2} \, {\left (x + 1\right )} \log \relax (x) + \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {-\ln \relax (x)\,\left (2\,x+{\mathrm {e}}^x-x^2\right )\,{\ln \left (\ln \relax (x)\right )}^2+\left (2\,x\,{\mathrm {e}}^x-\ln \left (x\,{\mathrm {e}}^x+x^2\right )\,\left (2\,x+2\,{\mathrm {e}}^x\right )+2\,x^2\right )\,\ln \left (\ln \relax (x)\right )+\ln \relax (x)\,\left (2\,x+{\mathrm {e}}^x\,\left (-x^2+x+1\right )+x^2-2\,x^3\right )+\ln \left (x\,{\mathrm {e}}^x+x^2\right )\,\ln \relax (x)\,\left (x\,{\mathrm {e}}^x+x^2\right )}{\ln \relax (x)\,\left (2\,x\,{\mathrm {e}}^x+2\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.74, size = 53, normalized size = 2.04 \begin {gather*} \frac {x^{2}}{2} - \frac {x \log {\left (\log {\relax (x )} \right )}^{2}}{2} + \frac {x}{2} + \left (- \frac {x}{2} + \frac {\log {\left (\log {\relax (x )} \right )}^{2}}{2}\right ) \log {\left (x^{2} + x e^{x} \right )} - \frac {\log {\relax (x )}}{2} - \frac {\log {\left (x + e^{x} \right )}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________