Optimal. Leaf size=20 \[ x-\frac {3-\frac {4}{3 x}+x}{25+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.40, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-104+9 x+1803 x^2+\left (-4+147 x^2\right ) \log (x)+3 x^2 \log ^2(x)}{1875 x^2+150 x^2 \log (x)+3 x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-104+9 x+1803 x^2+\left (-4+147 x^2\right ) \log (x)+3 x^2 \log ^2(x)}{3 x^2 (25+\log (x))^2} \, dx\\ &=\frac {1}{3} \int \frac {-104+9 x+1803 x^2+\left (-4+147 x^2\right ) \log (x)+3 x^2 \log ^2(x)}{x^2 (25+\log (x))^2} \, dx\\ &=\frac {1}{3} \int \left (3+\frac {-4+9 x+3 x^2}{x^2 (25+\log (x))^2}+\frac {-4-3 x^2}{x^2 (25+\log (x))}\right ) \, dx\\ &=x+\frac {1}{3} \int \frac {-4+9 x+3 x^2}{x^2 (25+\log (x))^2} \, dx+\frac {1}{3} \int \frac {-4-3 x^2}{x^2 (25+\log (x))} \, dx\\ &=x+\frac {1}{3} \int \frac {-4+9 x+3 x^2}{x^2 (25+\log (x))^2} \, dx+\frac {1}{3} \int \left (-\frac {3}{25+\log (x)}-\frac {4}{x^2 (25+\log (x))}\right ) \, dx\\ &=x+\frac {1}{3} \int \frac {-4+9 x+3 x^2}{x^2 (25+\log (x))^2} \, dx-\frac {4}{3} \int \frac {1}{x^2 (25+\log (x))} \, dx-\int \frac {1}{25+\log (x)} \, dx\\ &=x+\frac {1}{3} \int \frac {-4+9 x+3 x^2}{x^2 (25+\log (x))^2} \, dx-\frac {4}{3} \operatorname {Subst}\left (\int \frac {e^{-x}}{25+x} \, dx,x,\log (x)\right )-\operatorname {Subst}\left (\int \frac {e^x}{25+x} \, dx,x,\log (x)\right )\\ &=x-\frac {4}{3} e^{25} \text {Ei}(-25-\log (x))-\frac {\text {Ei}(25+\log (x))}{e^{25}}+\frac {1}{3} \int \frac {-4+9 x+3 x^2}{x^2 (25+\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 28, normalized size = 1.40 \begin {gather*} \frac {1}{3} \left (3 x+\frac {4-9 x-3 x^2}{x (25+\log (x))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 29, normalized size = 1.45 \begin {gather*} \frac {3 \, x^{2} \log \relax (x) + 72 \, x^{2} - 9 \, x + 4}{3 \, {\left (x \log \relax (x) + 25 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 24, normalized size = 1.20 \begin {gather*} x - \frac {3 \, x^{2} + 9 \, x - 4}{3 \, {\left (x \log \relax (x) + 25 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 24, normalized size = 1.20
method | result | size |
risch | \(x -\frac {3 x^{2}+9 x -4}{3 x \left (\ln \relax (x )+25\right )}\) | \(24\) |
norman | \(\frac {\frac {4}{3}+x^{2} \ln \relax (x )-3 x +24 x^{2}}{\left (\ln \relax (x )+25\right ) x}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 29, normalized size = 1.45 \begin {gather*} \frac {3 \, x^{2} \log \relax (x) + 72 \, x^{2} - 9 \, x + 4}{3 \, {\left (x \log \relax (x) + 25 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.20, size = 31, normalized size = 1.55 \begin {gather*} \frac {x^2+\frac {3\,x}{25}}{x}-\frac {x^2+3\,x-\frac {4}{3}}{x\,\left (\ln \relax (x)+25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 20, normalized size = 1.00 \begin {gather*} x + \frac {- 3 x^{2} - 9 x + 4}{3 x \log {\relax (x )} + 75 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________