Optimal. Leaf size=21 \[ 5+e-\frac {e^3}{-1+x-\frac {4+x}{x}} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 18, normalized size of antiderivative = 0.86, number of steps used = 4, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {12, 1680, 1814, 8} \begin {gather*} \frac {e^3 x}{5-(1-x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^3 \int \frac {4+x^2}{16+16 x-4 x^2-4 x^3+x^4} \, dx\\ &=e^3 \operatorname {Subst}\left (\int \frac {5+2 x+x^2}{\left (5-x^2\right )^2} \, dx,x,-1+x\right )\\ &=\frac {e^3 x}{5-(1-x)^2}-\frac {1}{10} e^3 \operatorname {Subst}(\int 0 \, dx,x,-1+x)\\ &=\frac {e^3 x}{5-(1-x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.76 \begin {gather*} -\frac {e^3 x}{-4-2 x+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 15, normalized size = 0.71 \begin {gather*} -\frac {x e^{3}}{x^{2} - 2 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.64, size = 15, normalized size = 0.71 \begin {gather*} -\frac {x e^{3}}{x^{2} - 2 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 0.76
method | result | size |
gosper | \(-\frac {x \,{\mathrm e}^{3}}{x^{2}-2 x -4}\) | \(16\) |
default | \(-\frac {x \,{\mathrm e}^{3}}{x^{2}-2 x -4}\) | \(16\) |
norman | \(-\frac {x \,{\mathrm e}^{3}}{x^{2}-2 x -4}\) | \(16\) |
risch | \(-\frac {x \,{\mathrm e}^{3}}{x^{2}-2 x -4}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 15, normalized size = 0.71 \begin {gather*} -\frac {x e^{3}}{x^{2} - 2 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.98, size = 16, normalized size = 0.76 \begin {gather*} \frac {x\,{\mathrm {e}}^3}{-x^2+2\,x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 0.67 \begin {gather*} - \frac {x e^{3}}{x^{2} - 2 x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________