Optimal. Leaf size=31 \[ e^{-4+\frac {12 \left (4-e^{-\frac {e^x}{3}+x}-x^2\right )}{4+x}} \]
________________________________________________________________________________________
Rubi [F] time = 6.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right ) \left (-48-96 x-12 x^2+e^{\frac {1}{3} \left (-e^x+3 x\right )} \left (-36-12 x+e^x (16+4 x)\right )\right )}{16+8 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right ) \left (-48-96 x-12 x^2+e^{\frac {1}{3} \left (-e^x+3 x\right )} \left (-36-12 x+e^x (16+4 x)\right )\right )}{(4+x)^2} \, dx\\ &=\int \left (-\frac {12 \exp \left (-\frac {e^x}{3}+x+\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right ) (3+x)}{(4+x)^2}+\frac {4 \exp \left (\frac {1}{3} \left (-e^x+6 x\right )+\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right )}{4+x}-\frac {12 \exp \left (\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right ) \left (4+8 x+x^2\right )}{(4+x)^2}\right ) \, dx\\ &=4 \int \frac {\exp \left (\frac {1}{3} \left (-e^x+6 x\right )+\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right )}{4+x} \, dx-12 \int \frac {\exp \left (-\frac {e^x}{3}+x+\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right ) (3+x)}{(4+x)^2} \, dx-12 \int \frac {\exp \left (\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right ) \left (4+8 x+x^2\right )}{(4+x)^2} \, dx\\ &=4 \int \frac {\exp \left (\frac {1}{3} \left (-e^x+6 x\right )+\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right )}{4+x} \, dx-12 \int \left (\exp \left (\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right )-\frac {12 \exp \left (\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right )}{(4+x)^2}\right ) \, dx-12 \int \left (-\frac {\exp \left (-\frac {e^x}{3}+x+\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right )}{(4+x)^2}+\frac {\exp \left (-\frac {e^x}{3}+x+\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right )}{4+x}\right ) \, dx\\ &=4 \int \frac {\exp \left (\frac {1}{3} \left (-e^x+6 x\right )+\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right )}{4+x} \, dx-12 \int \exp \left (\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right ) \, dx+12 \int \frac {\exp \left (-\frac {e^x}{3}+x+\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right )}{(4+x)^2} \, dx-12 \int \frac {\exp \left (-\frac {e^x}{3}+x+\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right )}{4+x} \, dx+144 \int \frac {\exp \left (\frac {32-12 e^{\frac {1}{3} \left (-e^x+3 x\right )}-4 x-12 x^2}{4+x}\right )}{(4+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 32, normalized size = 1.03 \begin {gather*} e^{44-12 x-\frac {144}{4+x}-\frac {12 e^{-\frac {e^x}{3}+x}}{4+x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 25, normalized size = 0.81 \begin {gather*} e^{\left (-\frac {4 \, {\left (3 \, x^{2} + x + 3 \, e^{\left (x - \frac {1}{3} \, e^{x}\right )} - 8\right )}}{x + 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.44, size = 41, normalized size = 1.32 \begin {gather*} e^{\left (-\frac {12 \, x^{2}}{x + 4} - \frac {4 \, x}{x + 4} - \frac {12 \, e^{\left (x - \frac {1}{3} \, e^{x}\right )}}{x + 4} + \frac {32}{x + 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 26, normalized size = 0.84
method | result | size |
risch | \({\mathrm e}^{-\frac {4 \left (3 x^{2}+3 \,{\mathrm e}^{-\frac {{\mathrm e}^{x}}{3}+x}+x -8\right )}{4+x}}\) | \(26\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {-12 \,{\mathrm e}^{-\frac {{\mathrm e}^{x}}{3}+x}-12 x^{2}-4 x +32}{4+x}}+4 \,{\mathrm e}^{\frac {-12 \,{\mathrm e}^{-\frac {{\mathrm e}^{x}}{3}+x}-12 x^{2}-4 x +32}{4+x}}}{4+x}\) | \(64\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 27, normalized size = 0.87 \begin {gather*} e^{\left (-12 \, x - \frac {12 \, e^{\left (x - \frac {1}{3} \, e^{x}\right )}}{x + 4} - \frac {144}{x + 4} + 44\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.19, size = 44, normalized size = 1.42 \begin {gather*} {\mathrm {e}}^{-\frac {4\,x}{x+4}}\,{\mathrm {e}}^{-\frac {12\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^x}{3}}\,{\mathrm {e}}^x}{x+4}}\,{\mathrm {e}}^{-\frac {12\,x^2}{x+4}}\,{\mathrm {e}}^{\frac {32}{x+4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.78, size = 24, normalized size = 0.77 \begin {gather*} e^{\frac {- 12 x^{2} - 4 x - 12 e^{x - \frac {e^{x}}{3}} + 32}{x + 4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________