3.41.23 \(\int 10 e^{-2 x} \, dx\)

Optimal. Leaf size=13 \[ -4-5 e^{-2 x}-\log (3) \]

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 7, normalized size of antiderivative = 0.54, number of steps used = 2, number of rules used = 2, integrand size = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {12, 2194} \begin {gather*} -5 e^{-2 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[10/E^(2*x),x]

[Out]

-5/E^(2*x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=10 \int e^{-2 x} \, dx\\ &=-5 e^{-2 x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 7, normalized size = 0.54 \begin {gather*} -5 e^{-2 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[10/E^(2*x),x]

[Out]

-5/E^(2*x)

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 6, normalized size = 0.46 \begin {gather*} -5 \, e^{\left (-2 \, x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(10/exp(x)^2,x, algorithm="fricas")

[Out]

-5*e^(-2*x)

________________________________________________________________________________________

giac [A]  time = 0.19, size = 6, normalized size = 0.46 \begin {gather*} -5 \, e^{\left (-2 \, x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(10/exp(x)^2,x, algorithm="giac")

[Out]

-5*e^(-2*x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 7, normalized size = 0.54




method result size



gosper \(-5 \,{\mathrm e}^{-2 x}\) \(7\)
derivativedivides \(-5 \,{\mathrm e}^{-2 x}\) \(7\)
default \(-5 \,{\mathrm e}^{-2 x}\) \(7\)
norman \(-5 \,{\mathrm e}^{-2 x}\) \(7\)
risch \(-5 \,{\mathrm e}^{-2 x}\) \(7\)
meijerg \(5-5 \,{\mathrm e}^{-2 x}\) \(9\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(10/exp(x)^2,x,method=_RETURNVERBOSE)

[Out]

-5/exp(x)^2

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 6, normalized size = 0.46 \begin {gather*} -5 \, e^{\left (-2 \, x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(10/exp(x)^2,x, algorithm="maxima")

[Out]

-5*e^(-2*x)

________________________________________________________________________________________

mupad [B]  time = 0.02, size = 6, normalized size = 0.46 \begin {gather*} -5\,{\mathrm {e}}^{-2\,x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(10*exp(-2*x),x)

[Out]

-5*exp(-2*x)

________________________________________________________________________________________

sympy [A]  time = 0.04, size = 7, normalized size = 0.54 \begin {gather*} - 5 e^{- 2 x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(10/exp(x)**2,x)

[Out]

-5*exp(-2*x)

________________________________________________________________________________________