Optimal. Leaf size=24 \[ x+e^5 \left (-4+e^5\right ) x-\log \left (\frac {2 x}{4+\log (2)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 17, normalized size of antiderivative = 0.71, number of steps used = 3, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {6, 43} \begin {gather*} \left (1-4 e^5+e^{10}\right ) x-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 43
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+\left (1+e^5 \left (-4+e^5\right )\right ) x}{x} \, dx\\ &=\int \left (1-4 e^5+e^{10}-\frac {1}{x}\right ) \, dx\\ &=\left (1-4 e^5+e^{10}\right ) x-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 17, normalized size = 0.71 \begin {gather*} x-4 e^5 x+e^{10} x-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 15, normalized size = 0.62 \begin {gather*} x e^{10} - 4 \, x e^{5} + x - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 17, normalized size = 0.71 \begin {gather*} x e^{\left (\log \left (e^{5} - 4\right ) + 5\right )} + x - \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 16, normalized size = 0.67
method | result | size |
risch | \(-4 x \,{\mathrm e}^{5}+x \,{\mathrm e}^{10}+x -\ln \relax (x )\) | \(16\) |
default | \(x \,{\mathrm e}^{\ln \left ({\mathrm e}^{5}-4\right )+5}+x -\ln \relax (x )\) | \(17\) |
norman | \(\left ({\mathrm e}^{10}-4 \,{\mathrm e}^{5}+1\right ) x -\ln \relax (x )\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 15, normalized size = 0.62 \begin {gather*} x {\left (e^{10} - 4 \, e^{5} + 1\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 15, normalized size = 0.62 \begin {gather*} x\,\left ({\mathrm {e}}^{10}-4\,{\mathrm {e}}^5+1\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 14, normalized size = 0.58 \begin {gather*} x \left (- 4 e^{5} + 1 + e^{10}\right ) - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________