Optimal. Leaf size=31 \[ -x+\frac {\left (e^{\frac {1}{2} x \left (2-e^{25}+x-\log (x)\right )}+x\right )^4}{x^4} \]
________________________________________________________________________________________
Rubi [F] time = 2.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x^5+e^{2 \left (2 x-e^{25} x+x^2-x \log (x)\right )} \left (-4+2 x-2 e^{25} x+4 x^2-2 x \log (x)\right )+e^{\frac {3}{2} \left (2 x-e^{25} x+x^2-x \log (x)\right )} \left (-12 x+6 x^2-6 e^{25} x^2+12 x^3-6 x^2 \log (x)\right )+e^{2 x-e^{25} x+x^2-x \log (x)} \left (-12 x^2+6 x^3-6 e^{25} x^3+12 x^4-6 x^3 \log (x)\right )+e^{\frac {1}{2} \left (2 x-e^{25} x+x^2-x \log (x)\right )} \left (-4 x^3+2 x^4-2 e^{25} x^4+4 x^5-2 x^4 \log (x)\right )}{x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+2 e^{2 x \left (2-e^{25}+x\right )} x^{-5-2 x} \left (-2+\left (1-e^{25}\right ) x+2 x^2-x \log (x)\right )+6 e^{\frac {3}{2} x \left (2-e^{25}+x\right )} x^{-4-\frac {3 x}{2}} \left (-2+\left (1-e^{25}\right ) x+2 x^2-x \log (x)\right )+6 e^{\left (2-e^{25}\right ) x+x^2} x^{-3-x} \left (-2+\left (1-e^{25}\right ) x+2 x^2-x \log (x)\right )+2 e^{\frac {1}{2} x \left (2-e^{25}+x\right )} x^{-2-\frac {x}{2}} \left (-2+\left (1-e^{25}\right ) x+2 x^2-x \log (x)\right )\right ) \, dx\\ &=-x+2 \int e^{2 x \left (2-e^{25}+x\right )} x^{-5-2 x} \left (-2+\left (1-e^{25}\right ) x+2 x^2-x \log (x)\right ) \, dx+2 \int e^{\frac {1}{2} x \left (2-e^{25}+x\right )} x^{-2-\frac {x}{2}} \left (-2+\left (1-e^{25}\right ) x+2 x^2-x \log (x)\right ) \, dx+6 \int e^{\frac {3}{2} x \left (2-e^{25}+x\right )} x^{-4-\frac {3 x}{2}} \left (-2+\left (1-e^{25}\right ) x+2 x^2-x \log (x)\right ) \, dx+6 \int e^{\left (2-e^{25}\right ) x+x^2} x^{-3-x} \left (-2+\left (1-e^{25}\right ) x+2 x^2-x \log (x)\right ) \, dx\\ &=-x+2 \int \left (-2 e^{2 x \left (2-e^{25}+x\right )} x^{-5-2 x}+e^{2 x \left (2-e^{25}+x\right )} \left (1-e^{25}\right ) x^{-4-2 x}+2 e^{2 x \left (2-e^{25}+x\right )} x^{-3-2 x}-e^{2 x \left (2-e^{25}+x\right )} x^{-4-2 x} \log (x)\right ) \, dx+2 \int \left (-2 e^{\frac {1}{2} x \left (2-e^{25}+x\right )} x^{-2-\frac {x}{2}}+e^{\frac {1}{2} x \left (2-e^{25}+x\right )} \left (1-e^{25}\right ) x^{-1-\frac {x}{2}}+2 e^{\frac {1}{2} x \left (2-e^{25}+x\right )} x^{-x/2}-e^{\frac {1}{2} x \left (2-e^{25}+x\right )} x^{-1-\frac {x}{2}} \log (x)\right ) \, dx+6 \int \left (-2 e^{\frac {3}{2} x \left (2-e^{25}+x\right )} x^{-4-\frac {3 x}{2}}+e^{\frac {3}{2} x \left (2-e^{25}+x\right )} \left (1-e^{25}\right ) x^{-3-\frac {3 x}{2}}+2 e^{\frac {3}{2} x \left (2-e^{25}+x\right )} x^{-2-\frac {3 x}{2}}-e^{\frac {3}{2} x \left (2-e^{25}+x\right )} x^{-3-\frac {3 x}{2}} \log (x)\right ) \, dx+6 \int \left (-2 e^{\left (2-e^{25}\right ) x+x^2} x^{-3-x}+e^{\left (2-e^{25}\right ) x+x^2} \left (1-e^{25}\right ) x^{-2-x}+2 e^{\left (2-e^{25}\right ) x+x^2} x^{-1-x}-e^{\left (2-e^{25}\right ) x+x^2} x^{-2-x} \log (x)\right ) \, dx\\ &=-x-2 \int e^{2 x \left (2-e^{25}+x\right )} x^{-4-2 x} \log (x) \, dx-2 \int e^{\frac {1}{2} x \left (2-e^{25}+x\right )} x^{-1-\frac {x}{2}} \log (x) \, dx-4 \int e^{2 x \left (2-e^{25}+x\right )} x^{-5-2 x} \, dx+4 \int e^{2 x \left (2-e^{25}+x\right )} x^{-3-2 x} \, dx-4 \int e^{\frac {1}{2} x \left (2-e^{25}+x\right )} x^{-2-\frac {x}{2}} \, dx+4 \int e^{\frac {1}{2} x \left (2-e^{25}+x\right )} x^{-x/2} \, dx-6 \int e^{\frac {3}{2} x \left (2-e^{25}+x\right )} x^{-3-\frac {3 x}{2}} \log (x) \, dx-6 \int e^{\left (2-e^{25}\right ) x+x^2} x^{-2-x} \log (x) \, dx-12 \int e^{\frac {3}{2} x \left (2-e^{25}+x\right )} x^{-4-\frac {3 x}{2}} \, dx+12 \int e^{\frac {3}{2} x \left (2-e^{25}+x\right )} x^{-2-\frac {3 x}{2}} \, dx-12 \int e^{\left (2-e^{25}\right ) x+x^2} x^{-3-x} \, dx+12 \int e^{\left (2-e^{25}\right ) x+x^2} x^{-1-x} \, dx+\left (2 \left (1-e^{25}\right )\right ) \int e^{2 x \left (2-e^{25}+x\right )} x^{-4-2 x} \, dx+\left (2 \left (1-e^{25}\right )\right ) \int e^{\frac {1}{2} x \left (2-e^{25}+x\right )} x^{-1-\frac {x}{2}} \, dx+\left (6 \left (1-e^{25}\right )\right ) \int e^{\frac {3}{2} x \left (2-e^{25}+x\right )} x^{-3-\frac {3 x}{2}} \, dx+\left (6 \left (1-e^{25}\right )\right ) \int e^{\left (2-e^{25}\right ) x+x^2} x^{-2-x} \, dx\\ &=-x+2 \int \frac {\int e^{2 x \left (2-e^{25}+x\right )} x^{-4-2 x} \, dx}{x} \, dx+2 \int \frac {\int e^{\frac {1}{2} x \left (2-e^{25}+x\right )} x^{-1-\frac {x}{2}} \, dx}{x} \, dx-4 \int e^{2 x \left (2-e^{25}+x\right )} x^{-5-2 x} \, dx+4 \int e^{2 x \left (2-e^{25}+x\right )} x^{-3-2 x} \, dx-4 \int e^{\frac {1}{2} x \left (2-e^{25}+x\right )} x^{-2-\frac {x}{2}} \, dx+4 \int e^{\frac {1}{2} x \left (2-e^{25}+x\right )} x^{-x/2} \, dx+6 \int \frac {\int e^{\frac {3}{2} x \left (2-e^{25}+x\right )} x^{-3-\frac {3 x}{2}} \, dx}{x} \, dx+6 \int \frac {\int e^{\left (2-e^{25}\right ) x+x^2} x^{-2-x} \, dx}{x} \, dx-12 \int e^{\frac {3}{2} x \left (2-e^{25}+x\right )} x^{-4-\frac {3 x}{2}} \, dx+12 \int e^{\frac {3}{2} x \left (2-e^{25}+x\right )} x^{-2-\frac {3 x}{2}} \, dx-12 \int e^{\left (2-e^{25}\right ) x+x^2} x^{-3-x} \, dx+12 \int e^{\left (2-e^{25}\right ) x+x^2} x^{-1-x} \, dx+\left (2 \left (1-e^{25}\right )\right ) \int e^{2 x \left (2-e^{25}+x\right )} x^{-4-2 x} \, dx+\left (2 \left (1-e^{25}\right )\right ) \int e^{\frac {1}{2} x \left (2-e^{25}+x\right )} x^{-1-\frac {x}{2}} \, dx+\left (6 \left (1-e^{25}\right )\right ) \int e^{\frac {3}{2} x \left (2-e^{25}+x\right )} x^{-3-\frac {3 x}{2}} \, dx+\left (6 \left (1-e^{25}\right )\right ) \int e^{\left (2-e^{25}\right ) x+x^2} x^{-2-x} \, dx-(2 \log (x)) \int e^{2 x \left (2-e^{25}+x\right )} x^{-4-2 x} \, dx-(2 \log (x)) \int e^{\frac {1}{2} x \left (2-e^{25}+x\right )} x^{-1-\frac {x}{2}} \, dx-(6 \log (x)) \int e^{\frac {3}{2} x \left (2-e^{25}+x\right )} x^{-3-\frac {3 x}{2}} \, dx-(6 \log (x)) \int e^{\left (2-e^{25}\right ) x+x^2} x^{-2-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 1.57, size = 113, normalized size = 3.65 \begin {gather*} -x+e^{-2 \left (-2+e^{25}\right ) x+2 x^2} x^{-4-2 x}+4 e^{-\frac {3}{2} \left (-2+e^{25}\right ) x+\frac {3 x^2}{2}} x^{-3-\frac {3 x}{2}}+6 e^{-\left (\left (-2+e^{25}\right ) x\right )+x^2} x^{-2-x}+4 e^{-\frac {1}{2} \left (-2+e^{25}\right ) x+\frac {x^2}{2}} x^{-1-\frac {x}{2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 100, normalized size = 3.23 \begin {gather*} -\frac {x^{5} - 4 \, x^{3} e^{\left (\frac {1}{2} \, x^{2} - \frac {1}{2} \, x e^{25} - \frac {1}{2} \, x \log \relax (x) + x\right )} - 6 \, x^{2} e^{\left (x^{2} - x e^{25} - x \log \relax (x) + 2 \, x\right )} - 4 \, x e^{\left (\frac {3}{2} \, x^{2} - \frac {3}{2} \, x e^{25} - \frac {3}{2} \, x \log \relax (x) + 3 \, x\right )} - e^{\left (2 \, x^{2} - 2 \, x e^{25} - 2 \, x \log \relax (x) + 4 \, x\right )}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.36, size = 100, normalized size = 3.23 \begin {gather*} -\frac {x^{5} - 4 \, x^{3} e^{\left (\frac {1}{2} \, x^{2} - \frac {1}{2} \, x e^{25} - \frac {1}{2} \, x \log \relax (x) + x\right )} - 6 \, x^{2} e^{\left (x^{2} - x e^{25} - x \log \relax (x) + 2 \, x\right )} - 4 \, x e^{\left (\frac {3}{2} \, x^{2} - \frac {3}{2} \, x e^{25} - \frac {3}{2} \, x \log \relax (x) + 3 \, x\right )} - e^{\left (2 \, x^{2} - 2 \, x e^{25} - 2 \, x \log \relax (x) + 4 \, x\right )}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.14, size = 94, normalized size = 3.03
method | result | size |
risch | \(-x +\frac {x^{-2 x} {\mathrm e}^{-2 x \left ({\mathrm e}^{25}-x -2\right )}}{x^{4}}+\frac {4 x^{-\frac {3 x}{2}} {\mathrm e}^{-\frac {3 x \left ({\mathrm e}^{25}-x -2\right )}{2}}}{x^{3}}+\frac {6 x^{-x} {\mathrm e}^{-x \left ({\mathrm e}^{25}-x -2\right )}}{x^{2}}+\frac {4 x^{-\frac {x}{2}} {\mathrm e}^{-\frac {x \left ({\mathrm e}^{25}-x -2\right )}{2}}}{x}\) | \(94\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 99, normalized size = 3.19 \begin {gather*} -x + \frac {4 \, x^{3} e^{\left (\frac {1}{2} \, x^{2} - \frac {1}{2} \, x e^{25} + \frac {3}{2} \, x \log \relax (x) + x\right )} + 6 \, x^{2} e^{\left (x^{2} - x e^{25} + x \log \relax (x) + 2 \, x\right )} + 4 \, x e^{\left (\frac {3}{2} \, x^{2} - \frac {3}{2} \, x e^{25} + \frac {1}{2} \, x \log \relax (x) + 3 \, x\right )} + e^{\left (2 \, x^{2} - 2 \, x e^{25} + 4 \, x\right )}}{x^{4} x^{2 \, x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.73, size = 101, normalized size = 3.26 \begin {gather*} \frac {4\,{\mathrm {e}}^{3\,x-\frac {3\,x\,{\mathrm {e}}^{25}}{2}-\frac {3\,x\,\ln \relax (x)}{2}+\frac {3\,x^2}{2}}}{x^3}-x+\frac {4\,{\mathrm {e}}^{x-\frac {x\,{\mathrm {e}}^{25}}{2}-\frac {x\,\ln \relax (x)}{2}+\frac {x^2}{2}}}{x}+\frac {6\,{\mathrm {e}}^{2\,x-x\,{\mathrm {e}}^{25}+x^2}}{x^x\,x^2}+\frac {{\mathrm {e}}^{4\,x-2\,x\,{\mathrm {e}}^{25}+2\,x^2}}{x^{2\,x}\,x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.50, size = 116, normalized size = 3.74 \begin {gather*} - x + \frac {4 x^{9} e^{\frac {x^{2}}{2} - \frac {x \log {\relax (x )}}{2} - \frac {x e^{25}}{2} + x} + 6 x^{8} e^{x^{2} - x \log {\relax (x )} - x e^{25} + 2 x} + 4 x^{7} e^{\frac {3 x^{2}}{2} - \frac {3 x \log {\relax (x )}}{2} - \frac {3 x e^{25}}{2} + 3 x} + x^{6} e^{2 x^{2} - 2 x \log {\relax (x )} - 2 x e^{25} + 4 x}}{x^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________