Optimal. Leaf size=29 \[ x \left (4+\frac {x (5+x)}{-3+x+3 x^2-\log (x)+\log (5 (3+x))}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {108-111 x-267 x^2+6 x^3+143 x^4+39 x^5+\left (72-30 x-99 x^2-27 x^3\right ) \log (x)+(12+4 x) \log ^2(x)+\left (-72+30 x+99 x^2+27 x^3+(-24-8 x) \log (x)\right ) \log (15+5 x)+(12+4 x) \log ^2(15+5 x)}{27-9 x-57 x^2+x^3+33 x^4+9 x^5+\left (18-20 x^2-6 x^3\right ) \log (x)+(3+x) \log ^2(x)+\left (-18+20 x^2+6 x^3+(-6-2 x) \log (x)\right ) \log (15+5 x)+(3+x) \log ^2(15+5 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {108-111 x-267 x^2+6 x^3+143 x^4+39 x^5+4 (3+x) \log ^2(x)+3 \left (-24+10 x+33 x^2+9 x^3\right ) \log (5 (3+x))+4 (3+x) \log ^2(5 (3+x))-(3+x) \log (x) \left (3 \left (-8+6 x+9 x^2\right )+8 \log (5 (3+x))\right )}{(3+x) \left (3-x-3 x^2+\log (x)-\log (5 (3+x))\right )^2} \, dx\\ &=\int \left (4-\frac {x \left (-15+12 x+98 x^2+49 x^3+6 x^4\right )}{(3+x) \left (-3+x+3 x^2-\log (x)+\log (5 (3+x))\right )^2}+\frac {x (10+3 x)}{-3+x+3 x^2-\log (x)+\log (5 (3+x))}\right ) \, dx\\ &=4 x-\int \frac {x \left (-15+12 x+98 x^2+49 x^3+6 x^4\right )}{(3+x) \left (-3+x+3 x^2-\log (x)+\log (5 (3+x))\right )^2} \, dx+\int \frac {x (10+3 x)}{-3+x+3 x^2-\log (x)+\log (5 (3+x))} \, dx\\ &=4 x-\int \left (-\frac {6}{\left (-3+x+3 x^2-\log (x)+\log (5 (3+x))\right )^2}-\frac {3 x}{\left (-3+x+3 x^2-\log (x)+\log (5 (3+x))\right )^2}+\frac {5 x^2}{\left (-3+x+3 x^2-\log (x)+\log (5 (3+x))\right )^2}+\frac {31 x^3}{\left (-3+x+3 x^2-\log (x)+\log (5 (3+x))\right )^2}+\frac {6 x^4}{\left (-3+x+3 x^2-\log (x)+\log (5 (3+x))\right )^2}+\frac {18}{(3+x) \left (-3+x+3 x^2-\log (x)+\log (5 (3+x))\right )^2}\right ) \, dx+\int \left (\frac {10 x}{-3+x+3 x^2-\log (x)+\log (5 (3+x))}+\frac {3 x^2}{-3+x+3 x^2-\log (x)+\log (5 (3+x))}\right ) \, dx\\ &=4 x+3 \int \frac {x}{\left (-3+x+3 x^2-\log (x)+\log (5 (3+x))\right )^2} \, dx+3 \int \frac {x^2}{-3+x+3 x^2-\log (x)+\log (5 (3+x))} \, dx-5 \int \frac {x^2}{\left (-3+x+3 x^2-\log (x)+\log (5 (3+x))\right )^2} \, dx+6 \int \frac {1}{\left (-3+x+3 x^2-\log (x)+\log (5 (3+x))\right )^2} \, dx-6 \int \frac {x^4}{\left (-3+x+3 x^2-\log (x)+\log (5 (3+x))\right )^2} \, dx+10 \int \frac {x}{-3+x+3 x^2-\log (x)+\log (5 (3+x))} \, dx-18 \int \frac {1}{(3+x) \left (-3+x+3 x^2-\log (x)+\log (5 (3+x))\right )^2} \, dx-31 \int \frac {x^3}{\left (-3+x+3 x^2-\log (x)+\log (5 (3+x))\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 31, normalized size = 1.07 \begin {gather*} 4 x+\frac {x^2 (5+x)}{-3+x+3 x^2-\log (x)+\log (5 (3+x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 49, normalized size = 1.69 \begin {gather*} \frac {13 \, x^{3} + 9 \, x^{2} + 4 \, x \log \left (5 \, x + 15\right ) - 4 \, x \log \relax (x) - 12 \, x}{3 \, x^{2} + x + \log \left (5 \, x + 15\right ) - \log \relax (x) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 34, normalized size = 1.17 \begin {gather*} 4 \, x + \frac {x^{3} + 5 \, x^{2}}{3 \, x^{2} + x + \log \left (5 \, x + 15\right ) - \log \relax (x) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 32, normalized size = 1.10
method | result | size |
risch | \(4 x +\frac {x^{2} \left (5+x \right )}{\ln \left (5 x +15\right )-3+3 x^{2}-\ln \relax (x )+x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.25, size = 51, normalized size = 1.76 \begin {gather*} \frac {13 \, x^{3} + 9 \, x^{2} + 4 \, x {\left (\log \relax (5) - 3\right )} + 4 \, x \log \left (x + 3\right ) - 4 \, x \log \relax (x)}{3 \, x^{2} + x + \log \relax (5) + \log \left (x + 3\right ) - \log \relax (x) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.85, size = 66, normalized size = 2.28 \begin {gather*} \frac {19\,\ln \relax (x)-19\,\ln \left (5\,x+15\right )-163\,x+48\,x\,\ln \left (5\,x+15\right )-48\,x\,\ln \relax (x)+51\,x^2+156\,x^3+57}{12\,\left (x+\ln \left (5\,x+15\right )-\ln \relax (x)+3\,x^2-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 29, normalized size = 1.00 \begin {gather*} 4 x + \frac {x^{3} + 5 x^{2}}{3 x^{2} + x - \log {\relax (x )} + \log {\left (5 x + 15 \right )} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________