Optimal. Leaf size=23 \[ e^{3 \left (-2+e^3\right )} (\log (x)-\log (\log (4)-\log (x))) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 32, normalized size of antiderivative = 1.39, number of steps used = 4, number of rules used = 2, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {12, 43} \begin {gather*} e^{3 e^3-6} \log (x)-e^{3 e^3-6} \log (\log (4)-\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 43
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {e^{-6+3 e^3} (1-x+\log (4))}{-x+\log (4)} \, dx,x,\log (x)\right )\\ &=e^{-6+3 e^3} \operatorname {Subst}\left (\int \frac {1-x+\log (4)}{-x+\log (4)} \, dx,x,\log (x)\right )\\ &=e^{-6+3 e^3} \operatorname {Subst}\left (\int \left (1+\frac {1}{-x+\log (4)}\right ) \, dx,x,\log (x)\right )\\ &=e^{-6+3 e^3} \log (x)-e^{-6+3 e^3} \log (\log (4)-\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 26, normalized size = 1.13 \begin {gather*} e^{-6+3 e^3} \left (\log \left (\frac {x}{4}\right )-\log \left (\log \left (\frac {x}{4}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 28, normalized size = 1.22 \begin {gather*} e^{\left (3 \, e^{3} - 6\right )} \log \relax (x) - e^{\left (3 \, e^{3} - 6\right )} \log \left (-2 \, \log \relax (2) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 45, normalized size = 1.96 \begin {gather*} -\frac {1}{2} \, e^{\left (3 \, e^{3} - 6\right )} \log \left (\frac {1}{4} \, \pi ^{2} {\left (\mathrm {sgn}\relax (x) - 1\right )}^{2} + {\left (2 \, \log \relax (2) - \log \left ({\left | x \right |}\right )\right )}^{2}\right ) + e^{\left (3 \, e^{3} - 6\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 0.96
method | result | size |
default | \({\mathrm e}^{3 \,{\mathrm e}^{3}} {\mathrm e}^{-6} \left (\ln \relax (x )-\ln \left (\ln \relax (x )-2 \ln \relax (2)\right )\right )\) | \(22\) |
risch | \({\mathrm e}^{3 \,{\mathrm e}^{3}-6} \ln \relax (x )-\ln \left (\ln \relax (x )-2 \ln \relax (2)\right ) {\mathrm e}^{3 \,{\mathrm e}^{3}-6}\) | \(29\) |
norman | \({\mathrm e}^{3 \,{\mathrm e}^{3}} {\mathrm e}^{-6} \ln \relax (x )-{\mathrm e}^{3 \,{\mathrm e}^{3}} {\mathrm e}^{-6} \ln \left (2 \ln \relax (2)-\ln \relax (x )\right )\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 88, normalized size = 3.83 \begin {gather*} -2 \, e^{\left (3 \, e^{3} - 6\right )} \log \relax (2) \log \left (-2 \, \log \relax (2) + \log \relax (x)\right ) + e^{\left (3 \, e^{3} - 6\right )} \log \relax (x) \log \left (-2 \, \log \relax (2) + \log \relax (x)\right ) + {\left ({\left (2 \, \log \relax (2) - \log \relax (x)\right )} \log \left (-2 \, \log \relax (2) + \log \relax (x)\right ) - 2 \, \log \relax (2) + \log \relax (x)\right )} e^{\left (3 \, e^{3} - 6\right )} - e^{\left (3 \, e^{3} - 6\right )} \log \left (-2 \, \log \relax (2) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.59, size = 19, normalized size = 0.83 \begin {gather*} -{\mathrm {e}}^{3\,{\mathrm {e}}^3-6}\,\left (\ln \left (\ln \left (\frac {x}{4}\right )\right )-\ln \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 32, normalized size = 1.39 \begin {gather*} \frac {e^{3 e^{3}} \log {\relax (x )}}{e^{6}} - \frac {e^{3 e^{3}} \log {\left (\log {\relax (x )} - 2 \log {\relax (2 )} \right )}}{e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________