Optimal. Leaf size=23 \[ x \left (4-\frac {2}{5+i \pi -e^8 x^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 24, normalized size of antiderivative = 1.04, number of steps used = 4, number of rules used = 4, integrand size = 81, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {28, 1814, 21, 8} \begin {gather*} 4 x-\frac {2 x}{-e^8 x^2+i \pi +5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 21
Rule 28
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{16} \int \frac {4 (5+i \pi )^2-2 e^8 x^2+4 e^{16} x^4+(5+i \pi ) \left (-2-8 e^8 x^2\right )}{\left (-e^8 (5+i \pi )+e^{16} x^2\right )^2} \, dx\\ &=-\frac {2 x}{5+i \pi -e^8 x^2}+\frac {e^8 \int \frac {8 (5 i-\pi )^2+8 e^8 (5+i \pi ) x^2}{-e^8 (5+i \pi )+e^{16} x^2} \, dx}{2 (5+i \pi )}\\ &=-\frac {2 x}{5+i \pi -e^8 x^2}+4 \int 1 \, dx\\ &=4 x-\frac {2 x}{5+i \pi -e^8 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 1.00 \begin {gather*} 4 x+\frac {2 x}{-5-i \pi +e^8 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [C] time = 0.51, size = 31, normalized size = 1.35 \begin {gather*} -\frac {2 \, {\left (2 \, x^{3} e^{8} - 2 i \, \pi x - 9 \, x\right )}}{i \, \pi - x^{2} e^{8} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.14, size = 23, normalized size = 1.00
method | result | size |
risch | \(4 x +\frac {2 i x}{i {\mathrm e}^{8} x^{2}+\pi -5 i}\) | \(23\) |
gosper | \(\frac {2 x \left (-2 x^{2} {\mathrm e}^{8}+2 \ln \left (-{\mathrm e}^{5}\right )-1\right )}{\ln \left (-{\mathrm e}^{5}\right )-x^{2} {\mathrm e}^{8}}\) | \(39\) |
default | \(4 x -\frac {2 \left ({\mathrm e}^{16}\right )^{2} {\mathrm e}^{-8} {\mathrm e}^{-16} x}{-x^{2} {\mathrm e}^{16}+\ln \left (-{\mathrm e}^{5}\right ) {\mathrm e}^{8}}\) | \(94\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 23, normalized size = 1.00 \begin {gather*} 4 \, x + \frac {2 \, x}{x^{2} e^{8} - \log \left (-e^{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.22, size = 22, normalized size = 0.96 \begin {gather*} 4\,x-\frac {2\,x}{\ln \left (-{\mathrm {e}}^5\right )-x^2\,{\mathrm {e}}^8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 17, normalized size = 0.74 \begin {gather*} 4 x + \frac {2 x}{x^{2} e^{8} - 5 - i \pi } \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________