Optimal. Leaf size=27 \[ e^{5+e^x x}+e^3 x+\frac {1}{3} \left (6+x+2 x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{3} \left (1+3 e^3+4 x+e^{5+x+e^x x} (3+3 x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (1+3 e^3+4 x+e^{5+x+e^x x} (3+3 x)\right ) \, dx\\ &=\frac {1}{3} \left (1+3 e^3\right ) x+\frac {2 x^2}{3}+\frac {1}{3} \int e^{5+x+e^x x} (3+3 x) \, dx\\ &=\frac {1}{3} \left (1+3 e^3\right ) x+\frac {2 x^2}{3}+\frac {1}{3} \int \left (3 e^{5+x+e^x x}+3 e^{5+x+e^x x} x\right ) \, dx\\ &=\frac {1}{3} \left (1+3 e^3\right ) x+\frac {2 x^2}{3}+\int e^{5+x+e^x x} \, dx+\int e^{5+x+e^x x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 27, normalized size = 1.00 \begin {gather*} e^{5+e^x x}+\frac {x}{3}+e^3 x+\frac {2 x^2}{3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 32, normalized size = 1.19 \begin {gather*} \frac {1}{3} \, {\left ({\left (2 \, x^{2} + 3 \, x e^{3} + x\right )} e^{x} + 3 \, e^{\left (x e^{x} + x + 5\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 20, normalized size = 0.74 \begin {gather*} \frac {2}{3} \, x^{2} + x e^{3} + \frac {1}{3} \, x + e^{\left (x e^{x} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 20, normalized size = 0.74
method | result | size |
norman | \(\left ({\mathrm e}^{3}+\frac {1}{3}\right ) x +\frac {2 x^{2}}{3}+{\mathrm e}^{{\mathrm e}^{x} x +5}\) | \(20\) |
default | \(\frac {x}{3}+\frac {2 x^{2}}{3}+{\mathrm e}^{{\mathrm e}^{x} x +5}+x \,{\mathrm e}^{3}\) | \(21\) |
risch | \(\frac {x}{3}+\frac {2 x^{2}}{3}+{\mathrm e}^{{\mathrm e}^{x} x +5}+x \,{\mathrm e}^{3}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 20, normalized size = 0.74 \begin {gather*} \frac {2}{3} \, x^{2} + x e^{3} + \frac {1}{3} \, x + e^{\left (x e^{x} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.58, size = 19, normalized size = 0.70 \begin {gather*} {\mathrm {e}}^{x\,{\mathrm {e}}^x+5}+x\,\left ({\mathrm {e}}^3+\frac {1}{3}\right )+\frac {2\,x^2}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 22, normalized size = 0.81 \begin {gather*} \frac {2 x^{2}}{3} + x \left (\frac {1}{3} + e^{3}\right ) + e^{x e^{x} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________