Optimal. Leaf size=19 \[ 1+\frac {-4-x+\log ^2(5+x)}{-3+x} \]
________________________________________________________________________________________
Rubi [C] time = 0.22, antiderivative size = 98, normalized size of antiderivative = 5.16, number of steps used = 11, number of rules used = 10, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.233, Rules used = {6742, 2411, 2344, 2301, 2316, 2315, 2397, 2394, 2393, 2391} \begin {gather*} -\frac {1}{4} \text {Li}_2\left (\frac {3-x}{8}\right )-\frac {1}{4} \text {Li}_2\left (\frac {x+5}{8}\right )+\frac {7}{3-x}-\frac {(x+5) \log ^2(x+5)}{8 (3-x)}-\frac {1}{8} \log ^2(x+5)-\frac {1}{4} \log \left (\frac {3-x}{8}\right ) \log (x+5)+\frac {1}{4} \log (8) \log (3-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2301
Rule 2315
Rule 2316
Rule 2344
Rule 2391
Rule 2393
Rule 2394
Rule 2397
Rule 2411
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {7}{(-3+x)^2}+\frac {2 \log (5+x)}{(-3+x) (5+x)}-\frac {\log ^2(5+x)}{(-3+x)^2}\right ) \, dx\\ &=\frac {7}{3-x}+2 \int \frac {\log (5+x)}{(-3+x) (5+x)} \, dx-\int \frac {\log ^2(5+x)}{(-3+x)^2} \, dx\\ &=\frac {7}{3-x}-\frac {(5+x) \log ^2(5+x)}{8 (3-x)}-\frac {1}{4} \int \frac {\log (5+x)}{-3+x} \, dx+2 \operatorname {Subst}\left (\int \frac {\log (x)}{(-8+x) x} \, dx,x,5+x\right )\\ &=\frac {7}{3-x}-\frac {1}{4} \log \left (\frac {3-x}{8}\right ) \log (5+x)-\frac {(5+x) \log ^2(5+x)}{8 (3-x)}+\frac {1}{4} \int \frac {\log \left (\frac {3-x}{8}\right )}{5+x} \, dx+\frac {1}{4} \operatorname {Subst}\left (\int \frac {\log (x)}{-8+x} \, dx,x,5+x\right )-\frac {1}{4} \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,5+x\right )\\ &=\frac {7}{3-x}+\frac {1}{4} \log (8) \log (3-x)-\frac {1}{4} \log \left (\frac {3-x}{8}\right ) \log (5+x)-\frac {1}{8} \log ^2(5+x)-\frac {(5+x) \log ^2(5+x)}{8 (3-x)}+\frac {1}{4} \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{8}\right )}{x} \, dx,x,5+x\right )+\frac {1}{4} \operatorname {Subst}\left (\int \frac {\log \left (\frac {x}{8}\right )}{-8+x} \, dx,x,5+x\right )\\ &=\frac {7}{3-x}+\frac {1}{4} \log (8) \log (3-x)-\frac {1}{4} \log \left (\frac {3-x}{8}\right ) \log (5+x)-\frac {1}{8} \log ^2(5+x)-\frac {(5+x) \log ^2(5+x)}{8 (3-x)}-\frac {1}{4} \text {Li}_2\left (\frac {3-x}{8}\right )-\frac {1}{4} \text {Li}_2\left (\frac {5+x}{8}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 14, normalized size = 0.74 \begin {gather*} \frac {-7+\log ^2(5+x)}{-3+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 14, normalized size = 0.74 \begin {gather*} \frac {\log \left (x + 5\right )^{2} - 7}{x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 20, normalized size = 1.05 \begin {gather*} \frac {\log \left (x + 5\right )^{2}}{x - 3} - \frac {7}{x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 15, normalized size = 0.79
method | result | size |
norman | \(\frac {\ln \left (5+x \right )^{2}-7}{x -3}\) | \(15\) |
risch | \(\frac {\ln \left (5+x \right )^{2}}{x -3}-\frac {7}{x -3}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 20, normalized size = 1.05 \begin {gather*} \frac {\log \left (x + 5\right )^{2}}{x - 3} - \frac {7}{x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.57, size = 14, normalized size = 0.74 \begin {gather*} \frac {{\ln \left (x+5\right )}^2-7}{x-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 14, normalized size = 0.74 \begin {gather*} \frac {\log {\left (x + 5 \right )}^{2}}{x - 3} - \frac {7}{x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________