Optimal. Leaf size=25 \[ \frac {e^{\log ^8(4)}}{\log \left (8+\frac {3}{x}\right ) (\log (x)+\log (\log (2)))} \]
________________________________________________________________________________________
Rubi [F] time = 1.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 e^{\log ^8(4)} \log (x)+e^{\log ^8(4)} (-3-8 x) \log \left (\frac {3+8 x}{x}\right )+3 e^{\log ^8(4)} \log (\log (2))}{\left (3 x+8 x^2\right ) \log ^2(x) \log ^2\left (\frac {3+8 x}{x}\right )+\left (6 x+16 x^2\right ) \log (x) \log ^2\left (\frac {3+8 x}{x}\right ) \log (\log (2))+\left (3 x+8 x^2\right ) \log ^2\left (\frac {3+8 x}{x}\right ) \log ^2(\log (2))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\log ^8(4)} \left (-\left ((3+8 x) \log \left (8+\frac {3}{x}\right )\right )+3 \log (x \log (2))\right )}{x (3+8 x) \log ^2\left (8+\frac {3}{x}\right ) \log ^2(x \log (2))} \, dx\\ &=e^{\log ^8(4)} \int \frac {-\left ((3+8 x) \log \left (8+\frac {3}{x}\right )\right )+3 \log (x \log (2))}{x (3+8 x) \log ^2\left (8+\frac {3}{x}\right ) \log ^2(x \log (2))} \, dx\\ &=e^{\log ^8(4)} \int \left (-\frac {1}{x \log \left (8+\frac {3}{x}\right ) \log ^2(x \log (2))}+\frac {3}{x (3+8 x) \log ^2\left (8+\frac {3}{x}\right ) \log (x \log (2))}\right ) \, dx\\ &=-\left (e^{\log ^8(4)} \int \frac {1}{x \log \left (8+\frac {3}{x}\right ) \log ^2(x \log (2))} \, dx\right )+\left (3 e^{\log ^8(4)}\right ) \int \frac {1}{x (3+8 x) \log ^2\left (8+\frac {3}{x}\right ) \log (x \log (2))} \, dx\\ &=-\left (e^{\log ^8(4)} \int \frac {1}{x \log \left (8+\frac {3}{x}\right ) \log ^2(x \log (2))} \, dx\right )+\left (3 e^{\log ^8(4)}\right ) \int \left (\frac {1}{3 x \log ^2\left (8+\frac {3}{x}\right ) \log (x \log (2))}-\frac {8}{3 (3+8 x) \log ^2\left (8+\frac {3}{x}\right ) \log (x \log (2))}\right ) \, dx\\ &=-\left (e^{\log ^8(4)} \int \frac {1}{x \log \left (8+\frac {3}{x}\right ) \log ^2(x \log (2))} \, dx\right )+e^{\log ^8(4)} \int \frac {1}{x \log ^2\left (8+\frac {3}{x}\right ) \log (x \log (2))} \, dx-\left (8 e^{\log ^8(4)}\right ) \int \frac {1}{(3+8 x) \log ^2\left (8+\frac {3}{x}\right ) \log (x \log (2))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.03, size = 24, normalized size = 0.96 \begin {gather*} \frac {e^{\log ^8(4)}}{\log \left (8+\frac {3}{x}\right ) \log (x \log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 38, normalized size = 1.52 \begin {gather*} \frac {e^{\left (256 \, \log \relax (2)^{8}\right )}}{\log \relax (x) \log \left (\frac {8 \, x + 3}{x}\right ) + \log \left (\frac {8 \, x + 3}{x}\right ) \log \left (\log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 43, normalized size = 1.72 \begin {gather*} \frac {e^{\left (256 \, \log \relax (2)^{8}\right )}}{\log \left (8 \, x + 3\right ) \log \relax (x) - \log \relax (x)^{2} + \log \left (8 \, x + 3\right ) \log \left (\log \relax (2)\right ) - \log \relax (x) \log \left (\log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.20, size = 123, normalized size = 4.92
method | result | size |
risch | \(\frac {2 i {\mathrm e}^{256 \ln \relax (2)^{8}}}{\left (\ln \relax (x )+\ln \left (\ln \relax (2)\right )\right ) \left (\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x +\frac {3}{8}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x +\frac {3}{8}\right )}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x +\frac {3}{8}\right )}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x +\frac {3}{8}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x +\frac {3}{8}\right )}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (x +\frac {3}{8}\right )}{x}\right )^{3}+6 i \ln \relax (2)-2 i \ln \relax (x )+2 i \ln \left (x +\frac {3}{8}\right )\right )}\) | \(123\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 37, normalized size = 1.48 \begin {gather*} \frac {e^{\left (256 \, \log \relax (2)^{8}\right )}}{{\left (\log \relax (x) + \log \left (\log \relax (2)\right )\right )} \log \left (8 \, x + 3\right ) - \log \relax (x)^{2} - \log \relax (x) \log \left (\log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.50, size = 181, normalized size = 7.24 \begin {gather*} \frac {\frac {4\,x\,\left ({\mathrm {e}}^{256\,{\ln \relax (2)}^8}-{\mathrm {e}}^{256\,{\ln \relax (2)}^8}\,\ln \left (\ln \relax (2)\right )\right )}{3}-\frac {4\,x\,{\mathrm {e}}^{256\,{\ln \relax (2)}^8}\,\ln \relax (x)}{3}}{\ln \left (\ln \relax (2)\right )+\ln \relax (x)}+\frac {4\,x\,{\mathrm {e}}^{256\,{\ln \relax (2)}^8}}{3}+\frac {{\mathrm {e}}^{256\,{\ln \relax (2)}^8}+\frac {8\,x\,{\mathrm {e}}^{256\,{\ln \relax (2)}^8}}{3}-\frac {4\,x\,{\mathrm {e}}^{256\,{\ln \relax (2)}^8}\,\ln \left (\ln \relax (2)\right )}{3}-\frac {4\,x\,{\mathrm {e}}^{256\,{\ln \relax (2)}^8}\,\ln \relax (x)}{3}}{{\ln \relax (x)}^2+2\,\ln \left (\ln \relax (2)\right )\,\ln \relax (x)+{\ln \left (\ln \relax (2)\right )}^2}+\frac {\frac {{\mathrm {e}}^{256\,{\ln \relax (2)}^8}}{\ln \left (\ln \relax (2)\right )+\ln \relax (x)}-\frac {{\mathrm {e}}^{256\,{\ln \relax (2)}^8}\,\ln \left (\frac {8\,x+3}{x}\right )\,\left (8\,x+3\right )}{3\,{\left (\ln \left (\ln \relax (2)\right )+\ln \relax (x)\right )}^2}}{\ln \left (\frac {8\,x+3}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 24, normalized size = 0.96 \begin {gather*} \frac {e^{256 \log {\relax (2 )}^{8}}}{\left (\log {\relax (x )} + \log {\left (\log {\relax (2 )} \right )}\right ) \log {\left (\frac {8 x + 3}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________