Optimal. Leaf size=24 \[ e^{4 x} \left (-e^{-x+\log ^2(x)}+5 x\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.26, antiderivative size = 52, normalized size of antiderivative = 2.17, number of steps used = 11, number of rules used = 6, integrand size = 90, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {14, 2196, 2176, 2194, 6706, 2288} \begin {gather*} 25 e^{4 x} x^2+e^{2 \left (x+\log ^2(x)\right )}-\frac {10 e^{3 x+\log ^2(x)} (3 x+2 \log (x))}{\frac {2 \log (x)}{x}+3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2194
Rule 2196
Rule 2288
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (50 e^{4 x} x (1+2 x)+\frac {2 e^{2 \left (x+\log ^2(x)\right )} (x+2 \log (x))}{x}-10 e^{3 x+\log ^2(x)} (1+3 x+2 \log (x))\right ) \, dx\\ &=2 \int \frac {e^{2 \left (x+\log ^2(x)\right )} (x+2 \log (x))}{x} \, dx-10 \int e^{3 x+\log ^2(x)} (1+3 x+2 \log (x)) \, dx+50 \int e^{4 x} x (1+2 x) \, dx\\ &=e^{2 \left (x+\log ^2(x)\right )}-\frac {10 e^{3 x+\log ^2(x)} (3 x+2 \log (x))}{3+\frac {2 \log (x)}{x}}+50 \int \left (e^{4 x} x+2 e^{4 x} x^2\right ) \, dx\\ &=e^{2 \left (x+\log ^2(x)\right )}-\frac {10 e^{3 x+\log ^2(x)} (3 x+2 \log (x))}{3+\frac {2 \log (x)}{x}}+50 \int e^{4 x} x \, dx+100 \int e^{4 x} x^2 \, dx\\ &=e^{2 \left (x+\log ^2(x)\right )}+\frac {25}{2} e^{4 x} x+25 e^{4 x} x^2-\frac {10 e^{3 x+\log ^2(x)} (3 x+2 \log (x))}{3+\frac {2 \log (x)}{x}}-\frac {25}{2} \int e^{4 x} \, dx-50 \int e^{4 x} x \, dx\\ &=-\frac {25 e^{4 x}}{8}+e^{2 \left (x+\log ^2(x)\right )}+25 e^{4 x} x^2-\frac {10 e^{3 x+\log ^2(x)} (3 x+2 \log (x))}{3+\frac {2 \log (x)}{x}}+\frac {25}{2} \int e^{4 x} \, dx\\ &=e^{2 \left (x+\log ^2(x)\right )}+25 e^{4 x} x^2-\frac {10 e^{3 x+\log ^2(x)} (3 x+2 \log (x))}{3+\frac {2 \log (x)}{x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 21, normalized size = 0.88 \begin {gather*} e^{2 x} \left (e^{\log ^2(x)}-5 e^x x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 33, normalized size = 1.38 \begin {gather*} 25 \, x^{2} e^{\left (4 \, x\right )} - 10 \, x e^{\left (\log \relax (x)^{2} + 3 \, x\right )} + e^{\left (2 \, \log \relax (x)^{2} + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 33, normalized size = 1.38 \begin {gather*} 25 \, x^{2} e^{\left (4 \, x\right )} - 10 \, x e^{\left (\log \relax (x)^{2} + 3 \, x\right )} + e^{\left (2 \, \log \relax (x)^{2} + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 34, normalized size = 1.42
method | result | size |
risch | \(25 x^{2} {\mathrm e}^{4 x}-10 x \,{\mathrm e}^{3 x +\ln \relax (x )^{2}}+{\mathrm e}^{2 x +2 \ln \relax (x )^{2}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 51, normalized size = 2.12 \begin {gather*} -10 \, x e^{\left (\log \relax (x)^{2} + 3 \, x\right )} + \frac {25}{8} \, {\left (8 \, x^{2} - 4 \, x + 1\right )} e^{\left (4 \, x\right )} + \frac {25}{8} \, {\left (4 \, x - 1\right )} e^{\left (4 \, x\right )} + e^{\left (2 \, \log \relax (x)^{2} + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.62, size = 33, normalized size = 1.38 \begin {gather*} {\mathrm {e}}^{2\,{\ln \relax (x)}^2+2\,x}+25\,x^2\,{\mathrm {e}}^{4\,x}-10\,x\,{\mathrm {e}}^{{\ln \relax (x)}^2+3\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 18.51, size = 42, normalized size = 1.75 \begin {gather*} 25 x^{2} e^{4 x} - 10 x e^{4 x} e^{- x + \log {\relax (x )}^{2}} + e^{4 x} e^{- 2 x + 2 \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________