Optimal. Leaf size=17 \[ \log \left (e^x+4 x (1-x \log (2 x))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {6684} \begin {gather*} \log \left (-4 x^2 \log (2 x)+4 x+e^x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log \left (e^x+4 x-4 x^2 \log (2 x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 17, normalized size = 1.00 \begin {gather*} \log \left (e^x+4 x-4 x^2 \log (2 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 29, normalized size = 1.71 \begin {gather*} 2 \, \log \left (2 \, x\right ) + \log \left (\frac {4 \, x^{2} \log \left (2 \, x\right ) - 4 \, x - e^{x}}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 18, normalized size = 1.06 \begin {gather*} \log \left (4 \, x^{2} \log \left (2 \, x\right ) - 4 \, x - e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 1.12
method | result | size |
derivativedivides | \(\ln \left (4 x^{2} \ln \left (2 x \right )-{\mathrm e}^{x}-4 x \right )\) | \(19\) |
default | \(\ln \left (4 x^{2} \ln \left (2 x \right )-{\mathrm e}^{x}-4 x \right )\) | \(19\) |
norman | \(\ln \left (4 x^{2} \ln \left (2 x \right )-{\mathrm e}^{x}-4 x \right )\) | \(19\) |
risch | \(2 \ln \relax (x )+\ln \left (\ln \left (2 x \right )-\frac {4 x +{\mathrm e}^{x}}{4 x^{2}}\right )\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 18, normalized size = 1.06 \begin {gather*} \log \left (4 \, x^{2} \log \left (2 \, x\right ) - 4 \, x - e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.63, size = 18, normalized size = 1.06 \begin {gather*} \ln \left (4\,x^2\,\ln \left (2\,x\right )-{\mathrm {e}}^x-4\,x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 17, normalized size = 1.00 \begin {gather*} \log {\left (- 4 x^{2} \log {\left (2 x \right )} + 4 x + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________