Optimal. Leaf size=32 \[ \frac {3}{x \left (-e^{e^{-2-2 x} \left (-1+\frac {-4+x+\log (x)}{x^2}\right )}+x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 112.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6 e^{2+2 x} x^3+e^{\frac {e^{-2-2 x} \left (-4+x-x^2+\log (x)\right )}{x^2}} \left (27+21 x-6 x^2+3 e^{2+2 x} x^2+6 x^3+(-6-6 x) \log (x)\right )}{\exp \left (2+2 x+\frac {2 e^{-2-2 x} \left (-4+x-x^2+\log (x)\right )}{x^2}\right ) x^4-2 \exp \left (2+2 x+\frac {e^{-2-2 x} \left (-4+x-x^2+\log (x)\right )}{x^2}\right ) x^5+e^{2+2 x} x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {3 e^{-2+e^{-2-2 x}+\frac {4 e^{-2-2 x}}{x^2}-2 x} \left (9+7 x-2 x^2+e^{2+2 x} x^2+2 x^3-2 \log (x)-2 x \log (x)\right )}{x^4 \left (e^{e^{-2-2 x}+\frac {4 e^{-2-2 x}}{x^2}} x-e^{\frac {e^{-2-2 x}}{x}} x^{\frac {e^{-2-2 x}}{x^2}}\right )}-\frac {3 \exp \left (-2+2 e^{-2-2 x}+\frac {8 e^{-2-2 x}}{x^2}-2 x\right ) \left (-9-7 x+2 x^2+e^{2+2 x} x^2-2 x^3+2 \log (x)+2 x \log (x)\right )}{x^3 \left (e^{e^{-2-2 x}+\frac {4 e^{-2-2 x}}{x^2}} x-e^{\frac {e^{-2-2 x}}{x}} x^{\frac {e^{-2-2 x}}{x^2}}\right )^2}\right ) \, dx\\ &=-\left (3 \int \frac {e^{-2+e^{-2-2 x}+\frac {4 e^{-2-2 x}}{x^2}-2 x} \left (9+7 x-2 x^2+e^{2+2 x} x^2+2 x^3-2 \log (x)-2 x \log (x)\right )}{x^4 \left (e^{e^{-2-2 x}+\frac {4 e^{-2-2 x}}{x^2}} x-e^{\frac {e^{-2-2 x}}{x}} x^{\frac {e^{-2-2 x}}{x^2}}\right )} \, dx\right )-3 \int \frac {\exp \left (-2+2 e^{-2-2 x}+\frac {8 e^{-2-2 x}}{x^2}-2 x\right ) \left (-9-7 x+2 x^2+e^{2+2 x} x^2-2 x^3+2 \log (x)+2 x \log (x)\right )}{x^3 \left (e^{e^{-2-2 x}+\frac {4 e^{-2-2 x}}{x^2}} x-e^{\frac {e^{-2-2 x}}{x}} x^{\frac {e^{-2-2 x}}{x^2}}\right )^2} \, dx\\ &=-\left (3 \int \frac {e^{-2-2 x} \left (9+7 x+\left (-2+e^{2+2 x}\right ) x^2+2 x^3-2 (1+x) \log (x)\right )}{x^4 \left (x-e^{-\frac {e^{-2 (1+x)} \left (4-x+x^2\right )}{x^2}} x^{\frac {e^{-2 (1+x)}}{x^2}}\right )} \, dx\right )-3 \int \left (-\frac {9 \exp \left (-2+2 e^{-2-2 x}+\frac {8 e^{-2-2 x}}{x^2}-2 x\right )}{x^3 \left (e^{e^{-2-2 x}+\frac {4 e^{-2-2 x}}{x^2}} x-e^{\frac {e^{-2-2 x}}{x}} x^{\frac {e^{-2-2 x}}{x^2}}\right )^2}-\frac {7 \exp \left (-2+2 e^{-2-2 x}+\frac {8 e^{-2-2 x}}{x^2}-2 x\right )}{x^2 \left (e^{e^{-2-2 x}+\frac {4 e^{-2-2 x}}{x^2}} x-e^{\frac {e^{-2-2 x}}{x}} x^{\frac {e^{-2-2 x}}{x^2}}\right )^2}+\frac {e^{2 e^{-2-2 x}+\frac {8 e^{-2-2 x}}{x^2}}}{x \left (e^{e^{-2-2 x}+\frac {4 e^{-2-2 x}}{x^2}} x-e^{\frac {e^{-2-2 x}}{x}} x^{\frac {e^{-2-2 x}}{x^2}}\right )^2}+\frac {2 \exp \left (-2+2 e^{-2-2 x}+\frac {8 e^{-2-2 x}}{x^2}-2 x\right )}{x \left (e^{e^{-2-2 x}+\frac {4 e^{-2-2 x}}{x^2}} x-e^{\frac {e^{-2-2 x}}{x}} x^{\frac {e^{-2-2 x}}{x^2}}\right )^2}-\frac {2 \exp \left (-2+2 e^{-2-2 x}+\frac {8 e^{-2-2 x}}{x^2}-2 x\right )}{\left (-e^{e^{-2-2 x}+\frac {4 e^{-2-2 x}}{x^2}} x+e^{\frac {e^{-2-2 x}}{x}} x^{\frac {e^{-2-2 x}}{x^2}}\right )^2}+\frac {2 \exp \left (-2+2 e^{-2-2 x}+\frac {8 e^{-2-2 x}}{x^2}-2 x\right ) \log (x)}{x^3 \left (e^{e^{-2-2 x}+\frac {4 e^{-2-2 x}}{x^2}} x-e^{\frac {e^{-2-2 x}}{x}} x^{\frac {e^{-2-2 x}}{x^2}}\right )^2}+\frac {2 \exp \left (-2+2 e^{-2-2 x}+\frac {8 e^{-2-2 x}}{x^2}-2 x\right ) \log (x)}{x^2 \left (e^{e^{-2-2 x}+\frac {4 e^{-2-2 x}}{x^2}} x-e^{\frac {e^{-2-2 x}}{x}} x^{\frac {e^{-2-2 x}}{x^2}}\right )^2}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 3.21, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-6 e^{2+2 x} x^3+e^{\frac {e^{-2-2 x} \left (-4+x-x^2+\log (x)\right )}{x^2}} \left (27+21 x-6 x^2+3 e^{2+2 x} x^2+6 x^3+(-6-6 x) \log (x)\right )}{e^{2+2 x+\frac {2 e^{-2-2 x} \left (-4+x-x^2+\log (x)\right )}{x^2}} x^4-2 e^{2+2 x+\frac {e^{-2-2 x} \left (-4+x-x^2+\log (x)\right )}{x^2}} x^5+e^{2+2 x} x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.61, size = 63, normalized size = 1.97 \begin {gather*} \frac {3 \, e^{\left (2 \, x + 2\right )}}{x^{2} e^{\left (2 \, x + 2\right )} - x e^{\left (-\frac {{\left (x^{2} - 2 \, {\left (x^{3} + x^{2}\right )} e^{\left (2 \, x + 2\right )} - x - \log \relax (x) + 4\right )} e^{\left (-2 \, x - 2\right )}}{x^{2}}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.88, size = 513, normalized size = 16.03 \begin {gather*} \frac {3 \, {\left (2 \, x^{3} - x^{2} e^{\left (2 \, x + 2\right )} - 2 \, x^{2} - 2 \, x \log \relax (x) + 7 \, x - 2 \, \log \relax (x) + 9\right )}}{2 \, x^{5} - x^{4} e^{\left (2 \, x + 2\right )} - 2 \, x^{4} e^{\left (-2 \, x + \frac {2 \, x^{3} - x^{2} e^{\left (-2 \, x - 2\right )} + 2 \, x^{2} + x e^{\left (-2 \, x - 2\right )} + e^{\left (-2 \, x - 2\right )} \log \relax (x) - 4 \, e^{\left (-2 \, x - 2\right )}}{x^{2}} - 2\right )} - 2 \, x^{4} + 2 \, x^{3} e^{\left (-2 \, x + \frac {2 \, x^{3} - x^{2} e^{\left (-2 \, x - 2\right )} + 2 \, x^{2} + x e^{\left (-2 \, x - 2\right )} + e^{\left (-2 \, x - 2\right )} \log \relax (x) - 4 \, e^{\left (-2 \, x - 2\right )}}{x^{2}} - 2\right )} + x^{3} e^{\left (\frac {2 \, x^{3} - x^{2} e^{\left (-2 \, x - 2\right )} + 2 \, x^{2} + x e^{\left (-2 \, x - 2\right )} + e^{\left (-2 \, x - 2\right )} \log \relax (x) - 4 \, e^{\left (-2 \, x - 2\right )}}{x^{2}}\right )} - 2 \, x^{3} \log \relax (x) + 2 \, x^{2} e^{\left (-2 \, x + \frac {2 \, x^{3} - x^{2} e^{\left (-2 \, x - 2\right )} + 2 \, x^{2} + x e^{\left (-2 \, x - 2\right )} + e^{\left (-2 \, x - 2\right )} \log \relax (x) - 4 \, e^{\left (-2 \, x - 2\right )}}{x^{2}} - 2\right )} \log \relax (x) + 7 \, x^{3} - 7 \, x^{2} e^{\left (-2 \, x + \frac {2 \, x^{3} - x^{2} e^{\left (-2 \, x - 2\right )} + 2 \, x^{2} + x e^{\left (-2 \, x - 2\right )} + e^{\left (-2 \, x - 2\right )} \log \relax (x) - 4 \, e^{\left (-2 \, x - 2\right )}}{x^{2}} - 2\right )} - 2 \, x^{2} \log \relax (x) + 2 \, x e^{\left (-2 \, x + \frac {2 \, x^{3} - x^{2} e^{\left (-2 \, x - 2\right )} + 2 \, x^{2} + x e^{\left (-2 \, x - 2\right )} + e^{\left (-2 \, x - 2\right )} \log \relax (x) - 4 \, e^{\left (-2 \, x - 2\right )}}{x^{2}} - 2\right )} \log \relax (x) + 9 \, x^{2} - 9 \, x e^{\left (-2 \, x + \frac {2 \, x^{3} - x^{2} e^{\left (-2 \, x - 2\right )} + 2 \, x^{2} + x e^{\left (-2 \, x - 2\right )} + e^{\left (-2 \, x - 2\right )} \log \relax (x) - 4 \, e^{\left (-2 \, x - 2\right )}}{x^{2}} - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 33, normalized size = 1.03
method | result | size |
risch | \(\frac {3}{x \left (x -{\mathrm e}^{\frac {\left (\ln \relax (x )-x^{2}+x -4\right ) {\mathrm e}^{-2 x -2}}{x^{2}}}\right )}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.68, size = 74, normalized size = 2.31 \begin {gather*} \frac {3 \, e^{\left (\frac {4 \, e^{\left (-2 \, x - 2\right )}}{x^{2}} + e^{\left (-2 \, x - 2\right )}\right )}}{x^{2} e^{\left (\frac {4 \, e^{\left (-2 \, x - 2\right )}}{x^{2}} + e^{\left (-2 \, x - 2\right )}\right )} - x e^{\left (\frac {e^{\left (-2 \, x - 2\right )}}{x} + \frac {e^{\left (-2 \, x - 2\right )} \log \relax (x)}{x^{2}}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.98, size = 214, normalized size = 6.69 \begin {gather*} -\frac {x^4\,\left (21\,{\mathrm {e}}^{2\,x+2}-6\,{\mathrm {e}}^{2\,x+2}\,\ln \relax (x)\right )+x^3\,\left (27\,{\mathrm {e}}^{2\,x+2}-6\,{\mathrm {e}}^{2\,x+2}\,\ln \relax (x)\right )-x^5\,\left (6\,{\mathrm {e}}^{2\,x+2}+3\,{\mathrm {e}}^{4\,x+4}\right )+6\,x^6\,{\mathrm {e}}^{2\,x+2}}{\left (x-x^{\frac {{\mathrm {e}}^{-2\,x-2}}{x^2}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^{-2}}{x}-{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^{-2}-\frac {4\,{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^{-2}}{x^2}}\right )\,\left (2\,x^6\,{\mathrm {e}}^{2\,x+2}-7\,x^5\,{\mathrm {e}}^{2\,x+2}-9\,x^4\,{\mathrm {e}}^{2\,x+2}-2\,x^7\,{\mathrm {e}}^{2\,x+2}+x^6\,{\mathrm {e}}^{4\,x+4}+2\,x^4\,{\mathrm {e}}^{2\,x+2}\,\ln \relax (x)+2\,x^5\,{\mathrm {e}}^{2\,x+2}\,\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.68, size = 31, normalized size = 0.97 \begin {gather*} - \frac {3}{- x^{2} + x e^{\frac {\left (- x^{2} + x + \log {\relax (x )} - 4\right ) e^{- 2 x - 2}}{x^{2}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________