Optimal. Leaf size=20 \[ \left (x+x^2\right ) \left (x-(1+\log (25))^2\right )^4 \log (x) \]
________________________________________________________________________________________
Rubi [B] time = 0.30, antiderivative size = 464, normalized size of antiderivative = 23.20, number of steps used = 15, number of rules used = 3, integrand size = 315, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.010, Rules used = {2356, 2304, 2295} \begin {gather*} x^6 \log (x)-\frac {3 x^5}{5}-x^5 \left (3+4 \log ^2(25)+8 \log (25)\right ) \log (x)+\frac {1}{5} x^5 \left (3+4 \log ^2(25)+8 \log (25)\right )-\frac {4}{5} x^5 \log ^2(25)-\frac {8}{5} x^5 \log (25)+\frac {x^4}{2}+\frac {3}{2} x^4 \log ^4(25)+6 x^4 \log ^3(25)+2 x^4 (1+\log (25))^2 \left (1+3 \log ^2(25)+6 \log (25)\right ) \log (x)-\frac {1}{2} x^4 (1+\log (25))^2 \left (1+3 \log ^2(25)+6 \log (25)\right )+8 x^4 \log ^2(25)+4 x^4 \log (25)+\frac {2 x^3}{3}-\frac {4}{3} x^3 \log ^6(25)-8 x^3 \log ^5(25)-18 x^3 \log ^4(25)-\frac {56}{3} x^3 \log ^3(25)+2 x^3 (1+\log (25))^4 \left (1-2 \log ^2(25)-4 \log (25)\right ) \log (x)-\frac {2}{3} x^3 (1+\log (25))^4 \left (1-2 \log ^2(25)-4 \log (25)\right )-8 x^3 \log ^2(25)-\frac {3 x^2}{2}+12 x^2 \log ^6(25)+16 x^2 \log ^5(25)+5 x^2 \log ^4(25)-12 x^2 \log ^3(25)-x^2 (1+\log (25))^6 \left (3-\log ^2(25)-\log (625)\right ) \log (x)+\frac {1}{2} x^2 (1+\log (25))^6 \left (3-\log ^2(25)-\log (625)\right )-16 x^2 \log ^2(25)-8 x^2 \log (25)+x+\frac {1}{2} (x+1)^2 \log ^8(25)+4 (x+1)^2 \log ^7(25)+28 x \log ^6(25)+56 x \log ^5(25)+70 x \log ^4(25)+56 x \log ^3(25)+28 x \log ^2(25)+x (1+\log (25))^8 \log (x)-x (1+\log (25))^8+8 x \log (25) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2295
Rule 2304
Rule 2356
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x-\frac {3 x^2}{2}+\frac {2 x^3}{3}+\frac {x^4}{2}-\frac {3 x^5}{5}+\frac {x^6}{6}+4 (1+x)^2 \log ^7(25)+\frac {1}{2} (1+x)^2 \log ^8(25)+\log (25) \int \left (8-16 x+16 x^3-8 x^4\right ) \, dx+\log ^2(25) \int \left (28-32 x-24 x^2+32 x^3-4 x^4\right ) \, dx+\log ^3(25) \int \left (56-24 x-56 x^2+24 x^3\right ) \, dx+\log ^4(25) \int \left (70+10 x-54 x^2+6 x^3\right ) \, dx+\log ^5(25) \int \left (56+32 x-24 x^2\right ) \, dx+\log ^6(25) \int \left (28+24 x-4 x^2\right ) \, dx+\int \left (1-6 x+6 x^2+8 x^3-15 x^4+6 x^5+\left (8-32 x+64 x^3-40 x^4\right ) \log (25)+\left (28-64 x-72 x^2+128 x^3-20 x^4\right ) \log ^2(25)+\left (56-48 x-168 x^2+96 x^3\right ) \log ^3(25)+\left (70+20 x-162 x^2+24 x^3\right ) \log ^4(25)+\left (56+64 x-72 x^2\right ) \log ^5(25)+\left (28+48 x-12 x^2\right ) \log ^6(25)+(8+16 x) \log ^7(25)+(1+2 x) \log ^8(25)\right ) \log (x) \, dx\\ &=x-\frac {3 x^2}{2}+\frac {2 x^3}{3}+\frac {x^4}{2}-\frac {3 x^5}{5}+\frac {x^6}{6}+8 x \log (25)-8 x^2 \log (25)+4 x^4 \log (25)-\frac {8}{5} x^5 \log (25)+28 x \log ^2(25)-16 x^2 \log ^2(25)-8 x^3 \log ^2(25)+8 x^4 \log ^2(25)-\frac {4}{5} x^5 \log ^2(25)+56 x \log ^3(25)-12 x^2 \log ^3(25)-\frac {56}{3} x^3 \log ^3(25)+6 x^4 \log ^3(25)+70 x \log ^4(25)+5 x^2 \log ^4(25)-18 x^3 \log ^4(25)+\frac {3}{2} x^4 \log ^4(25)+56 x \log ^5(25)+16 x^2 \log ^5(25)-8 x^3 \log ^5(25)+28 x \log ^6(25)+12 x^2 \log ^6(25)-\frac {4}{3} x^3 \log ^6(25)+4 (1+x)^2 \log ^7(25)+\frac {1}{2} (1+x)^2 \log ^8(25)+\int \left (6 x^5 \log (x)+(1+\log (25))^8 \log (x)-6 x^2 (1+\log (25))^4 \left (-1+4 \log (25)+2 \log ^2(25)\right ) \log (x)+8 x^3 (1+\log (25))^2 \left (1+6 \log (25)+3 \log ^2(25)\right ) \log (x)-5 x^4 \left (3+8 \log (25)+4 \log ^2(25)\right ) \log (x)+2 x (1+\log (25))^6 \left (-3+\log ^2(25)+\log (625)\right ) \log (x)\right ) \, dx\\ &=x-\frac {3 x^2}{2}+\frac {2 x^3}{3}+\frac {x^4}{2}-\frac {3 x^5}{5}+\frac {x^6}{6}+8 x \log (25)-8 x^2 \log (25)+4 x^4 \log (25)-\frac {8}{5} x^5 \log (25)+28 x \log ^2(25)-16 x^2 \log ^2(25)-8 x^3 \log ^2(25)+8 x^4 \log ^2(25)-\frac {4}{5} x^5 \log ^2(25)+56 x \log ^3(25)-12 x^2 \log ^3(25)-\frac {56}{3} x^3 \log ^3(25)+6 x^4 \log ^3(25)+70 x \log ^4(25)+5 x^2 \log ^4(25)-18 x^3 \log ^4(25)+\frac {3}{2} x^4 \log ^4(25)+56 x \log ^5(25)+16 x^2 \log ^5(25)-8 x^3 \log ^5(25)+28 x \log ^6(25)+12 x^2 \log ^6(25)-\frac {4}{3} x^3 \log ^6(25)+4 (1+x)^2 \log ^7(25)+\frac {1}{2} (1+x)^2 \log ^8(25)+6 \int x^5 \log (x) \, dx+(1+\log (25))^8 \int \log (x) \, dx+\left (6 (1+\log (25))^4 \left (1-4 \log (25)-2 \log ^2(25)\right )\right ) \int x^2 \log (x) \, dx+\left (8 (1+\log (25))^2 \left (1+6 \log (25)+3 \log ^2(25)\right )\right ) \int x^3 \log (x) \, dx-\left (5 \left (3+8 \log (25)+4 \log ^2(25)\right )\right ) \int x^4 \log (x) \, dx-\left (2 (1+\log (25))^6 \left (3-\log ^2(25)-\log (625)\right )\right ) \int x \log (x) \, dx\\ &=x-\frac {3 x^2}{2}+\frac {2 x^3}{3}+\frac {x^4}{2}-\frac {3 x^5}{5}+8 x \log (25)-8 x^2 \log (25)+4 x^4 \log (25)-\frac {8}{5} x^5 \log (25)+28 x \log ^2(25)-16 x^2 \log ^2(25)-8 x^3 \log ^2(25)+8 x^4 \log ^2(25)-\frac {4}{5} x^5 \log ^2(25)+56 x \log ^3(25)-12 x^2 \log ^3(25)-\frac {56}{3} x^3 \log ^3(25)+6 x^4 \log ^3(25)+70 x \log ^4(25)+5 x^2 \log ^4(25)-18 x^3 \log ^4(25)+\frac {3}{2} x^4 \log ^4(25)+56 x \log ^5(25)+16 x^2 \log ^5(25)-8 x^3 \log ^5(25)+28 x \log ^6(25)+12 x^2 \log ^6(25)-\frac {4}{3} x^3 \log ^6(25)+4 (1+x)^2 \log ^7(25)+\frac {1}{2} (1+x)^2 \log ^8(25)-x (1+\log (25))^8-\frac {2}{3} x^3 (1+\log (25))^4 \left (1-4 \log (25)-2 \log ^2(25)\right )-\frac {1}{2} x^4 (1+\log (25))^2 \left (1+6 \log (25)+3 \log ^2(25)\right )+\frac {1}{5} x^5 \left (3+8 \log (25)+4 \log ^2(25)\right )+\frac {1}{2} x^2 (1+\log (25))^6 \left (3-\log ^2(25)-\log (625)\right )+x^6 \log (x)+x (1+\log (25))^8 \log (x)+2 x^3 (1+\log (25))^4 \left (1-4 \log (25)-2 \log ^2(25)\right ) \log (x)+2 x^4 (1+\log (25))^2 \left (1+6 \log (25)+3 \log ^2(25)\right ) \log (x)-x^5 \left (3+8 \log (25)+4 \log ^2(25)\right ) \log (x)-x^2 (1+\log (25))^6 \left (3-\log ^2(25)-\log (625)\right ) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.23, size = 216, normalized size = 10.80 \begin {gather*} \frac {1}{30} x \left (-5 x^5+20 x^2 (1+\log (25))^4 \left (-1+4 \log (25)+2 \log ^2(25)\right )-15 x^3 (1+\log (25))^2 \left (1+6 \log (25)+3 \log ^2(25)\right )+6 x^4 \left (3+8 \log (25)+4 \log ^2(25)\right )-15 x (1+\log (25))^6 \left (-3+\log ^2(25)+\log (625)\right )+30 (1+\log (25))^8 \log (x)+15 x (1+\log (25))^6 \left (-3+\log ^2(25)+\log (625)\right ) (1+2 \log (x))-20 x^2 (1+\log (25))^4 \left (-1+4 \log (25)+2 \log ^2(25)\right ) (1+3 \log (x))+15 x^3 (1+\log (25))^2 \left (1+6 \log (25)+3 \log ^2(25)\right ) (1+4 \log (x))-6 x^4 \left (3+8 \log (25)+4 \log ^2(25)\right ) (1+5 \log (x))+5 x^5 (1+6 \log (x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.52, size = 187, normalized size = 9.35 \begin {gather*} {\left (256 \, {\left (x^{2} + x\right )} \log \relax (5)^{8} + 1024 \, {\left (x^{2} + x\right )} \log \relax (5)^{7} - 256 \, {\left (x^{3} - 6 \, x^{2} - 7 \, x\right )} \log \relax (5)^{6} + x^{6} - 256 \, {\left (3 \, x^{3} - 4 \, x^{2} - 7 \, x\right )} \log \relax (5)^{5} - 3 \, x^{5} + 32 \, {\left (3 \, x^{4} - 27 \, x^{3} + 5 \, x^{2} + 35 \, x\right )} \log \relax (5)^{4} + 2 \, x^{4} + 64 \, {\left (3 \, x^{4} - 7 \, x^{3} - 3 \, x^{2} + 7 \, x\right )} \log \relax (5)^{3} + 2 \, x^{3} - 16 \, {\left (x^{5} - 8 \, x^{4} + 6 \, x^{3} + 8 \, x^{2} - 7 \, x\right )} \log \relax (5)^{2} - 3 \, x^{2} - 16 \, {\left (x^{5} - 2 \, x^{4} + 2 \, x^{2} - x\right )} \log \relax (5) + x\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 694, normalized size = 34.70 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 200, normalized size = 10.00
method | result | size |
norman | \(x^{6} \ln \relax (x )+\left (-16 \ln \relax (5)-16 \ln \relax (5)^{2}-3\right ) x^{5} \ln \relax (x )+\left (96 \ln \relax (5)^{4}+192 \ln \relax (5)^{3}+128 \ln \relax (5)^{2}+32 \ln \relax (5)+2\right ) x^{4} \ln \relax (x )+\left (-256 \ln \relax (5)^{6}-768 \ln \relax (5)^{5}-864 \ln \relax (5)^{4}-448 \ln \relax (5)^{3}-96 \ln \relax (5)^{2}+2\right ) x^{3} \ln \relax (x )+\left (256 \ln \relax (5)^{8}+1024 \ln \relax (5)^{7}+1792 \ln \relax (5)^{6}+1792 \ln \relax (5)^{5}+1120 \ln \relax (5)^{4}+448 \ln \relax (5)^{3}+112 \ln \relax (5)^{2}+16 \ln \relax (5)+1\right ) x \ln \relax (x )+\left (-32 \ln \relax (5)+256 \ln \relax (5)^{8}+1024 \ln \relax (5)^{7}+160 \ln \relax (5)^{4}-192 \ln \relax (5)^{3}-128 \ln \relax (5)^{2}+1536 \ln \relax (5)^{6}+1024 \ln \relax (5)^{5}-3\right ) x^{2} \ln \relax (x )\) | \(200\) |
risch | \(x \left (1-3 x +128 x^{3} \ln \relax (5)^{2}+1024 \ln \relax (5)^{7}+1792 \ln \relax (5)^{6}+1792 \ln \relax (5)^{5}+256 \ln \relax (5)^{8}-768 x^{2} \ln \relax (5)^{5}+1120 \ln \relax (5)^{4}+448 \ln \relax (5)^{3}+16 \ln \relax (5)+112 \ln \relax (5)^{2}+x^{5}-3 x^{4}+2 x^{3}+2 x^{2}+1536 x \ln \relax (5)^{6}+192 x^{3} \ln \relax (5)^{3}+160 x \ln \relax (5)^{4}-32 x \ln \relax (5)-96 x^{2} \ln \relax (5)^{2}+32 x^{3} \ln \relax (5)+96 x^{3} \ln \relax (5)^{4}+256 \ln \relax (5)^{8} x +1024 \ln \relax (5)^{7} x -256 \ln \relax (5)^{6} x^{2}+1024 \ln \relax (5)^{5} x -864 \ln \relax (5)^{4} x^{2}-192 \ln \relax (5)^{3} x -16 x^{4} \ln \relax (5)^{2}-128 x \ln \relax (5)^{2}-16 x^{4} \ln \relax (5)-448 x^{2} \ln \relax (5)^{3}\right ) \ln \relax (x )\) | \(223\) |
default | \(-96 x^{3} \ln \relax (5)^{2} \ln \relax (x )-3 x^{2} \ln \relax (x )+2 x^{3} \ln \relax (x )+x^{6} \ln \relax (x )+112 \ln \relax (x ) \ln \relax (5)^{2} x +448 \ln \relax (x ) \ln \relax (5)^{3} x -128 \ln \relax (x ) \ln \relax (5)^{2} x^{2}+1120 \ln \relax (x ) \ln \relax (5)^{4} x -3 x^{5} \ln \relax (x )+1024 \ln \relax (x ) \ln \relax (5)^{7} x +1536 \ln \relax (x ) \ln \relax (5)^{6} x^{2}+1792 \ln \relax (x ) \ln \relax (5)^{6} x +1024 \ln \relax (x ) \ln \relax (5)^{5} x^{2}-864 \ln \relax (x ) \ln \relax (5)^{4} x^{3}+1792 \ln \relax (x ) \ln \relax (5)^{5} x +160 \ln \relax (x ) \ln \relax (5)^{4} x^{2}-448 \ln \relax (x ) \ln \relax (5)^{3} x^{3}+128 \ln \relax (x ) \ln \relax (5)^{2} x^{4}-192 \ln \relax (x ) \ln \relax (5)^{3} x^{2}+32 \ln \relax (x ) \ln \relax (5) x^{4}-16 \ln \relax (5) \ln \relax (x ) x^{5}+192 \ln \relax (5)^{3} x^{4} \ln \relax (x )-16 \ln \relax (5)^{2} \ln \relax (x ) x^{5}-768 \ln \relax (5)^{5} \ln \relax (x ) x^{3}+96 \ln \relax (5)^{4} x^{4} \ln \relax (x )+256 \ln \relax (5)^{8} \ln \relax (x ) x^{2}+1024 \ln \relax (5)^{7} \ln \relax (x ) x^{2}-256 \ln \relax (5)^{6} \ln \relax (x ) x^{3}+2 x^{4} \ln \relax (x )+x \ln \relax (x )+256 x \ln \relax (5)^{8} \ln \relax (x )+16 x \ln \relax (5) \ln \relax (x )-32 x^{2} \ln \relax (5) \ln \relax (x )\) | \(313\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 559, normalized size = 27.95 \begin {gather*} 128 \, {\left (x^{2} + 2 \, x\right )} \log \relax (5)^{8} + 512 \, {\left (x^{2} + 2 \, x\right )} \log \relax (5)^{7} - \frac {256}{3} \, {\left (x^{3} - 9 \, x^{2} - 21 \, x\right )} \log \relax (5)^{6} + \frac {1}{5} \, {\left (16 \, \log \relax (5)^{2} + 16 \, \log \relax (5) + 3\right )} x^{5} - 256 \, {\left (x^{3} - 2 \, x^{2} - 7 \, x\right )} \log \relax (5)^{5} - \frac {1}{2} \, {\left (48 \, \log \relax (5)^{4} + 96 \, \log \relax (5)^{3} + 64 \, \log \relax (5)^{2} + 16 \, \log \relax (5) + 1\right )} x^{4} - \frac {3}{5} \, x^{5} + 8 \, {\left (3 \, x^{4} - 36 \, x^{3} + 10 \, x^{2} + 140 \, x\right )} \log \relax (5)^{4} + \frac {2}{3} \, {\left (128 \, \log \relax (5)^{6} + 384 \, \log \relax (5)^{5} + 432 \, \log \relax (5)^{4} + 224 \, \log \relax (5)^{3} + 48 \, \log \relax (5)^{2} - 1\right )} x^{3} + \frac {1}{2} \, x^{4} + \frac {16}{3} \, {\left (9 \, x^{4} - 28 \, x^{3} - 18 \, x^{2} + 84 \, x\right )} \log \relax (5)^{3} - \frac {1}{2} \, {\left (256 \, \log \relax (5)^{8} + 1024 \, \log \relax (5)^{7} + 1536 \, \log \relax (5)^{6} + 1024 \, \log \relax (5)^{5} + 160 \, \log \relax (5)^{4} - 192 \, \log \relax (5)^{3} - 128 \, \log \relax (5)^{2} - 32 \, \log \relax (5) - 3\right )} x^{2} + \frac {2}{3} \, x^{3} - \frac {16}{5} \, {\left (x^{5} - 10 \, x^{4} + 10 \, x^{3} + 20 \, x^{2} - 35 \, x\right )} \log \relax (5)^{2} - {\left (256 \, \log \relax (5)^{8} + 1024 \, \log \relax (5)^{7} + 1792 \, \log \relax (5)^{6} + 1792 \, \log \relax (5)^{5} + 1120 \, \log \relax (5)^{4} + 448 \, \log \relax (5)^{3} + 112 \, \log \relax (5)^{2} + 16 \, \log \relax (5) + 1\right )} x - \frac {3}{2} \, x^{2} - \frac {8}{5} \, {\left (2 \, x^{5} - 5 \, x^{4} + 10 \, x^{2} - 10 \, x\right )} \log \relax (5) + {\left (256 \, {\left (x^{2} + x\right )} \log \relax (5)^{8} + 1024 \, {\left (x^{2} + x\right )} \log \relax (5)^{7} - 256 \, {\left (x^{3} - 6 \, x^{2} - 7 \, x\right )} \log \relax (5)^{6} + x^{6} - 256 \, {\left (3 \, x^{3} - 4 \, x^{2} - 7 \, x\right )} \log \relax (5)^{5} - 3 \, x^{5} + 32 \, {\left (3 \, x^{4} - 27 \, x^{3} + 5 \, x^{2} + 35 \, x\right )} \log \relax (5)^{4} + 2 \, x^{4} + 64 \, {\left (3 \, x^{4} - 7 \, x^{3} - 3 \, x^{2} + 7 \, x\right )} \log \relax (5)^{3} + 2 \, x^{3} - 16 \, {\left (x^{5} - 8 \, x^{4} + 6 \, x^{3} + 8 \, x^{2} - 7 \, x\right )} \log \relax (5)^{2} - 3 \, x^{2} - 16 \, {\left (x^{5} - 2 \, x^{4} + 2 \, x^{2} - x\right )} \log \relax (5) + x\right )} \log \relax (x) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.69, size = 22, normalized size = 1.10 \begin {gather*} x\,\ln \relax (x)\,\left (x+1\right )\,{\left (\ln \left (625\right )-x+4\,{\ln \relax (5)}^2+1\right )}^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.44, size = 282, normalized size = 14.10 \begin {gather*} \left (x^{6} - 16 x^{5} \log {\relax (5 )}^{2} - 16 x^{5} \log {\relax (5 )} - 3 x^{5} + 2 x^{4} + 32 x^{4} \log {\relax (5 )} + 128 x^{4} \log {\relax (5 )}^{2} + 96 x^{4} \log {\relax (5 )}^{4} + 192 x^{4} \log {\relax (5 )}^{3} - 768 x^{3} \log {\relax (5 )}^{5} - 864 x^{3} \log {\relax (5 )}^{4} - 256 x^{3} \log {\relax (5 )}^{6} - 448 x^{3} \log {\relax (5 )}^{3} - 96 x^{3} \log {\relax (5 )}^{2} + 2 x^{3} - 192 x^{2} \log {\relax (5 )}^{3} - 128 x^{2} \log {\relax (5 )}^{2} - 32 x^{2} \log {\relax (5 )} - 3 x^{2} + 160 x^{2} \log {\relax (5 )}^{4} + 1024 x^{2} \log {\relax (5 )}^{5} + 256 x^{2} \log {\relax (5 )}^{8} + 1536 x^{2} \log {\relax (5 )}^{6} + 1024 x^{2} \log {\relax (5 )}^{7} + x + 16 x \log {\relax (5 )} + 112 x \log {\relax (5 )}^{2} + 448 x \log {\relax (5 )}^{3} + 1120 x \log {\relax (5 )}^{4} + 256 x \log {\relax (5 )}^{8} + 1792 x \log {\relax (5 )}^{5} + 1024 x \log {\relax (5 )}^{7} + 1792 x \log {\relax (5 )}^{6}\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________