Optimal. Leaf size=31 \[ 3+\frac {\log ^2(x)}{2-\sqrt {\frac {e^{x/2}}{x^2}}-x} \]
________________________________________________________________________________________
Rubi [F] time = 14.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(16-8 x) \log (x)+4 x \log ^2(x)+\sqrt {\frac {e^{x/2}}{x^2}} \left (-8 \log (x)+(-4+x) \log ^2(x)\right )}{\frac {4 e^{x/2}}{x}+16 x-16 x^2+4 x^3+\sqrt {\frac {e^{x/2}}{x^2}} \left (-16 x+8 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 \sqrt {\frac {e^{x/2}}{x^2}} x \log (x)}{e^{x/2}-4 x^2+4 x^3-x^4}-\frac {8 \sqrt {\frac {e^{x/2}}{x^2}} x^3 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2}+\frac {14 \sqrt {\frac {e^{x/2}}{x^2}} x^4 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2}-\frac {6 \sqrt {\frac {e^{x/2}}{x^2}} x^5 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2}+\frac {\sqrt {\frac {e^{x/2}}{x^2}} x^6 \log ^2(x)}{2 \left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2}-\frac {\sqrt {\frac {e^{x/2}}{x^2}} x \log ^2(x)}{e^{x/2}-4 x^2+4 x^3-x^4}+\frac {\sqrt {\frac {e^{x/2}}{x^2}} x^2 \log ^2(x)}{4 \left (e^{x/2}-4 x^2+4 x^3-x^4\right )}-\frac {(-2+x)^2 x^3 \left (8-10 x+x^2\right ) \log ^2(x)}{2 \left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2}+\frac {x \log (x) \left (8-4 x+8 \log (x)-8 x \log (x)+x^2 \log (x)\right )}{2 \left (-e^{x/2}+4 x^2-4 x^3+x^4\right )}\right ) \, dx\\ &=\frac {1}{4} \int \frac {\sqrt {\frac {e^{x/2}}{x^2}} x^2 \log ^2(x)}{e^{x/2}-4 x^2+4 x^3-x^4} \, dx+\frac {1}{2} \int \frac {\sqrt {\frac {e^{x/2}}{x^2}} x^6 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx-\frac {1}{2} \int \frac {(-2+x)^2 x^3 \left (8-10 x+x^2\right ) \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2} \, dx+\frac {1}{2} \int \frac {x \log (x) \left (8-4 x+8 \log (x)-8 x \log (x)+x^2 \log (x)\right )}{-e^{x/2}+4 x^2-4 x^3+x^4} \, dx-2 \int \frac {\sqrt {\frac {e^{x/2}}{x^2}} x \log (x)}{e^{x/2}-4 x^2+4 x^3-x^4} \, dx-6 \int \frac {\sqrt {\frac {e^{x/2}}{x^2}} x^5 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx-8 \int \frac {\sqrt {\frac {e^{x/2}}{x^2}} x^3 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx+14 \int \frac {\sqrt {\frac {e^{x/2}}{x^2}} x^4 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx-\int \frac {\sqrt {\frac {e^{x/2}}{x^2}} x \log ^2(x)}{e^{x/2}-4 x^2+4 x^3-x^4} \, dx\\ &=-\left (\frac {1}{2} \int \left (\frac {32 x^3 \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2}-\frac {72 x^4 \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2}+\frac {52 x^5 \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2}-\frac {14 x^6 \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2}+\frac {x^7 \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2}\right ) \, dx\right )+\frac {1}{2} \int \left (\frac {8 x \log (x)}{-e^{x/2}+4 x^2-4 x^3+x^4}-\frac {4 x^2 \log (x)}{-e^{x/2}+4 x^2-4 x^3+x^4}+\frac {8 x \log ^2(x)}{-e^{x/2}+4 x^2-4 x^3+x^4}-\frac {8 x^2 \log ^2(x)}{-e^{x/2}+4 x^2-4 x^3+x^4}+\frac {x^3 \log ^2(x)}{-e^{x/2}+4 x^2-4 x^3+x^4}\right ) \, dx+2 \int e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} \int \frac {e^{x/4}}{e^{x/2}-(-2+x)^2 x^2} \, dx \, dx+\frac {\left (\sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {\sqrt {e^{x/2}} x \log ^2(x)}{e^{x/2}-4 x^2+4 x^3-x^4} \, dx}{4 \sqrt {e^{x/2}}}+\frac {\left (\sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {\sqrt {e^{x/2}} x^5 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx}{2 \sqrt {e^{x/2}}}-\frac {\left (\sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {\sqrt {e^{x/2}} \log ^2(x)}{e^{x/2}-4 x^2+4 x^3-x^4} \, dx}{\sqrt {e^{x/2}}}-\frac {\left (6 \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {\sqrt {e^{x/2}} x^4 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx}{\sqrt {e^{x/2}}}-\frac {\left (8 \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {\sqrt {e^{x/2}} x^2 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx}{\sqrt {e^{x/2}}}+\frac {\left (14 \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {\sqrt {e^{x/2}} x^3 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx}{\sqrt {e^{x/2}}}-\left (2 e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x \log (x)\right ) \int \frac {e^{x/4}}{e^{x/2}-4 x^2+4 x^3-x^4} \, dx\\ &=-\left (\frac {1}{2} \int \frac {x^7 \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2} \, dx\right )+\frac {1}{2} \int \frac {x^3 \log ^2(x)}{-e^{x/2}+4 x^2-4 x^3+x^4} \, dx-2 \int \frac {x^2 \log (x)}{-e^{x/2}+4 x^2-4 x^3+x^4} \, dx+4 \int \frac {x \log (x)}{-e^{x/2}+4 x^2-4 x^3+x^4} \, dx+4 \int \frac {x \log ^2(x)}{-e^{x/2}+4 x^2-4 x^3+x^4} \, dx-4 \int \frac {x^2 \log ^2(x)}{-e^{x/2}+4 x^2-4 x^3+x^4} \, dx+7 \int \frac {x^6 \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2} \, dx-16 \int \frac {x^3 \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2} \, dx-26 \int \frac {x^5 \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2} \, dx+36 \int \frac {x^4 \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2} \, dx+\frac {1}{4} \left (e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {e^{x/4} x \log ^2(x)}{e^{x/2}-4 x^2+4 x^3-x^4} \, dx+\frac {1}{2} \left (e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {e^{x/4} x^5 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx-\left (e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {e^{x/4} \log ^2(x)}{e^{x/2}-4 x^2+4 x^3-x^4} \, dx-\left (6 e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {e^{x/4} x^4 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx-\left (8 e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {e^{x/4} x^2 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx+\left (14 e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {e^{x/4} x^3 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx+\frac {\left (2 \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {e^{-x/4} \sqrt {e^{x/2}} \int \frac {e^{x/4}}{e^{x/2}-(-2+x)^2 x^2} \, dx}{x} \, dx}{\sqrt {e^{x/2}}}-\left (2 e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x \log (x)\right ) \int \frac {e^{x/4}}{e^{x/2}-4 x^2+4 x^3-x^4} \, dx\\ &=-\left (\frac {1}{2} \int \frac {x^7 \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2} \, dx\right )+\frac {1}{2} \int \frac {x^3 \log ^2(x)}{-e^{x/2}+4 x^2-4 x^3+x^4} \, dx+2 \int \frac {\int \frac {x^2}{-e^{x/2}+(-2+x)^2 x^2} \, dx}{x} \, dx+4 \int \frac {x \log ^2(x)}{-e^{x/2}+4 x^2-4 x^3+x^4} \, dx-4 \int \frac {x^2 \log ^2(x)}{-e^{x/2}+4 x^2-4 x^3+x^4} \, dx-4 \int \frac {\int \frac {x}{-e^{x/2}+(-2+x)^2 x^2} \, dx}{x} \, dx+7 \int \frac {x^6 \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2} \, dx-16 \int \frac {x^3 \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2} \, dx-26 \int \frac {x^5 \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2} \, dx+36 \int \frac {x^4 \log ^2(x)}{\left (-e^{x/2}+4 x^2-4 x^3+x^4\right )^2} \, dx+\frac {1}{4} \left (e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {e^{x/4} x \log ^2(x)}{e^{x/2}-4 x^2+4 x^3-x^4} \, dx+\frac {1}{2} \left (e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {e^{x/4} x^5 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx-\left (e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {e^{x/4} \log ^2(x)}{e^{x/2}-4 x^2+4 x^3-x^4} \, dx+\left (2 e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {\int \frac {e^{x/4}}{e^{x/2}-(-2+x)^2 x^2} \, dx}{x} \, dx-\left (6 e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {e^{x/4} x^4 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx-\left (8 e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {e^{x/4} x^2 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx+\left (14 e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x\right ) \int \frac {e^{x/4} x^3 \log ^2(x)}{\left (e^{x/2}-4 x^2+4 x^3-x^4\right )^2} \, dx-(2 \log (x)) \int \frac {x^2}{-e^{x/2}+4 x^2-4 x^3+x^4} \, dx+(4 \log (x)) \int \frac {x}{-e^{x/2}+4 x^2-4 x^3+x^4} \, dx-\left (2 e^{-x/4} \sqrt {\frac {e^{x/2}}{x^2}} x \log (x)\right ) \int \frac {e^{x/4}}{e^{x/2}-4 x^2+4 x^3-x^4} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.41, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {(16-8 x) \log (x)+4 x \log ^2(x)+\sqrt {\frac {e^{x/2}}{x^2}} \left (-8 \log (x)+(-4+x) \log ^2(x)\right )}{\frac {4 e^{x/2}}{x}+16 x-16 x^2+4 x^3+\sqrt {\frac {e^{x/2}}{x^2}} \left (-16 x+8 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 20, normalized size = 0.65 \begin {gather*} -\frac {x \log \relax (x)^{2}}{x^{2} - 2 \, x + e^{\left (\frac {1}{4} \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, x \log \relax (x)^{2} + {\left ({\left (x - 4\right )} \log \relax (x)^{2} - 8 \, \log \relax (x)\right )} \sqrt {\frac {1}{x^{2}}} e^{\left (\frac {1}{4} \, x\right )} - 8 \, {\left (x - 2\right )} \log \relax (x)}{4 \, {\left (x^{3} + 2 \, {\left (x^{2} - 2 \, x\right )} \sqrt {\frac {1}{x^{2}}} e^{\left (\frac {1}{4} \, x\right )} - 4 \, x^{2} + 4 \, x + \frac {e^{\left (\frac {1}{2} \, x\right )}}{x}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (x -4\right ) \ln \relax (x )^{2}-8 \ln \relax (x )\right ) \sqrt {\frac {{\mathrm e}^{\frac {x}{2}}}{x^{2}}}+4 x \ln \relax (x )^{2}+\left (-8 x +16\right ) \ln \relax (x )}{\frac {4 \,{\mathrm e}^{\frac {x}{2}}}{x}+\left (8 x^{2}-16 x \right ) \sqrt {\frac {{\mathrm e}^{\frac {x}{2}}}{x^{2}}}+4 x^{3}-16 x^{2}+16 x}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 20, normalized size = 0.65 \begin {gather*} -\frac {x \log \relax (x)^{2}}{x^{2} - 2 \, x + e^{\left (\frac {1}{4} \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.26, size = 564, normalized size = 18.19 \begin {gather*} \frac {x^2\,{\left (x-2\right )}^2\,\left (\frac {x^3\,\ln \relax (x)\,\left (x^3-24\,x^2+68\,x-48\right )\,\left (8\,\ln \relax (x)-4\,x+x^2\,\ln \relax (x)-8\,x\,\ln \relax (x)+8\right )-2\,x^3\,\ln \relax (x)\,{\left (x-2\right )}^2\,\left (x+4\right )\,\left (x\,\ln \relax (x)-2\,x+4\right )}{2\,x^9-48\,x^8+400\,x^7-1408\,x^6+2336\,x^5-1792\,x^4+512\,x^3}+\frac {x^3\,\ln \relax (x)\,{\left (x-2\right )}^2\,\left (x+4\right )\,\left (8\,\ln \relax (x)-4\,x+x^2\,\ln \relax (x)-8\,x\,\ln \relax (x)+8\right )}{2\,x^9-48\,x^8+400\,x^7-1408\,x^6+2336\,x^5-1792\,x^4+512\,x^3}\right )}{{\mathrm {e}}^{x/2}-x^2\,{\left (x-2\right )}^2}-\frac {\sqrt {\frac {{\mathrm {e}}^{x/2}}{x^2}}\,\left (x^2\,\left (\frac {x^4\,\ln \relax (x)\,\left (x-2\right )\,\left (8\,x+8\,\ln \relax (x)+x^2\,\ln \relax (x)-14\,x\,\ln \relax (x)-16\right )+8\,x^3\,\ln \relax (x)\,\left (x^2-3\,x+2\right )\,\left (4\,\ln \relax (x)-x\,\ln \relax (x)+8\right )}{2\,x^9-48\,x^8+400\,x^7-1408\,x^6+2336\,x^5-1792\,x^4+512\,x^3}-\frac {x^4\,\ln \relax (x)\,{\left (x-2\right )}^2\,\left (4\,\ln \relax (x)-x\,\ln \relax (x)+8\right )}{2\,x^9-48\,x^8+400\,x^7-1408\,x^6+2336\,x^5-1792\,x^4+512\,x^3}\right )\,{\left (x-2\right )}^2-\frac {8\,x^5\,\ln \relax (x)\,\left (x-2\right )\,\left (x^2-3\,x+2\right )\,\left (8\,x+8\,\ln \relax (x)+x^2\,\ln \relax (x)-14\,x\,\ln \relax (x)-16\right )}{2\,x^9-48\,x^8+400\,x^7-1408\,x^6+2336\,x^5-1792\,x^4+512\,x^3}\right )}{{\mathrm {e}}^{x/2}-x^2\,{\left (x-2\right )}^2}-\frac {2\,x^5\,\ln \relax (x)\,{\left (x-2\right )}^2\,\left (x\,\ln \relax (x)-2\,x+4\right )\,\left (x^3-24\,x^2+68\,x-48\right )}{\left ({\mathrm {e}}^{x/2}-x^2\,{\left (x-2\right )}^2\right )\,\left (2\,x^9-48\,x^8+400\,x^7-1408\,x^6+2336\,x^5-1792\,x^4+512\,x^3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________