Optimal. Leaf size=31 \[ 3-e^{-\frac {4 x}{6+e^4+\frac {4}{x \left (x-x^2\right )}}} x \]
________________________________________________________________________________________
Rubi [F] time = 12.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-\frac {2 \left (-2 x^3+2 x^4\right )}{-4-6 x^2+6 x^3+e^4 \left (-x^2+x^3\right )}\right ) \left (-16-48 x^2+96 x^3-100 x^4+96 x^5-84 x^6+24 x^7+e^8 \left (-x^4+2 x^5-x^6\right )+e^4 \left (-8 x^2+8 x^3-12 x^4+28 x^5-20 x^6+4 x^7\right )\right )}{16+48 x^2-48 x^3+36 x^4-72 x^5+36 x^6+e^8 \left (x^4-2 x^5+x^6\right )+e^4 \left (8 x^2-8 x^3+12 x^4-24 x^5+12 x^6\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) \left (-16-8 \left (6+e^4\right ) x^2+8 \left (12+e^4\right ) x^3-\left (100+12 e^4+e^8\right ) x^4+2 \left (48+14 e^4+e^8\right ) x^5-\left (84+20 e^4+e^8\right ) x^6+4 \left (6+e^4\right ) x^7\right )}{\left (4+\left (6+e^4\right ) x^2-\left (6+e^4\right ) x^3\right )^2} \, dx\\ &=\int \left (-\exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right )+\frac {4 \exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) x}{6+e^4}+\frac {16 \exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) \left (-4-12 x-\left (6+e^4\right ) x^2\right )}{\left (6+e^4\right ) \left (4+\left (6+e^4\right ) x^2-\left (6+e^4\right ) x^3\right )^2}+\frac {16 \exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) (1+2 x)}{\left (6+e^4\right ) \left (4+\left (6+e^4\right ) x^2-\left (6+e^4\right ) x^3\right )}\right ) \, dx\\ &=\frac {4 \int \exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) x \, dx}{6+e^4}+\frac {16 \int \frac {\exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) \left (-4-12 x-\left (6+e^4\right ) x^2\right )}{\left (4+\left (6+e^4\right ) x^2-\left (6+e^4\right ) x^3\right )^2} \, dx}{6+e^4}+\frac {16 \int \frac {\exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) (1+2 x)}{4+\left (6+e^4\right ) x^2-\left (6+e^4\right ) x^3} \, dx}{6+e^4}-\int \exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) \, dx\\ &=\frac {4 \int \exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) x \, dx}{6+e^4}+\frac {16 \int \left (-\frac {4 \exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right )}{\left (4+\left (6+e^4\right ) x^2-\left (6+e^4\right ) x^3\right )^2}-\frac {12 \exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) x}{\left (4+\left (6+e^4\right ) x^2-\left (6+e^4\right ) x^3\right )^2}+\frac {\exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) \left (-6-e^4\right ) x^2}{\left (4+\left (6+e^4\right ) x^2-\left (6+e^4\right ) x^3\right )^2}\right ) \, dx}{6+e^4}+\frac {16 \int \left (\frac {\exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right )}{4+\left (6+e^4\right ) x^2-\left (6+e^4\right ) x^3}+\frac {2 \exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) x}{4+\left (6+e^4\right ) x^2-\left (6+e^4\right ) x^3}\right ) \, dx}{6+e^4}-\int \exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) \, dx\\ &=-\left (16 \int \frac {\exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) x^2}{\left (4+\left (6+e^4\right ) x^2-\left (6+e^4\right ) x^3\right )^2} \, dx\right )+\frac {4 \int \exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) x \, dx}{6+e^4}+\frac {16 \int \frac {\exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right )}{4+\left (6+e^4\right ) x^2-\left (6+e^4\right ) x^3} \, dx}{6+e^4}+\frac {32 \int \frac {\exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) x}{4+\left (6+e^4\right ) x^2-\left (6+e^4\right ) x^3} \, dx}{6+e^4}-\frac {64 \int \frac {\exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right )}{\left (4+\left (6+e^4\right ) x^2-\left (6+e^4\right ) x^3\right )^2} \, dx}{6+e^4}-\frac {192 \int \frac {\exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) x}{\left (4+\left (6+e^4\right ) x^2-\left (6+e^4\right ) x^3\right )^2} \, dx}{6+e^4}-\int \exp \left (-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 36, normalized size = 1.16 \begin {gather*} -e^{-\frac {4 (-1+x) x^3}{-4-\left (6+e^4\right ) x^2+\left (6+e^4\right ) x^3}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 41, normalized size = 1.32 \begin {gather*} -x e^{\left (-\frac {4 \, {\left (x^{4} - x^{3}\right )}}{6 \, x^{3} - 6 \, x^{2} + {\left (x^{3} - x^{2}\right )} e^{4} - 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 40, normalized size = 1.29
method | result | size |
risch | \(-x \,{\mathrm e}^{-\frac {4 x^{3} \left (x -1\right )}{x^{3} {\mathrm e}^{4}-x^{2} {\mathrm e}^{4}+6 x^{3}-6 x^{2}-4}}\) | \(40\) |
gosper | \(-x \,{\mathrm e}^{-\frac {4 x^{3} \left (x -1\right )}{x^{3} {\mathrm e}^{4}-x^{2} {\mathrm e}^{4}+6 x^{3}-6 x^{2}-4}}\) | \(42\) |
norman | \(\frac {\left (\left (-{\mathrm e}^{4}-6\right ) x^{4}+\left ({\mathrm e}^{4}+6\right ) x^{3}+4 x \right ) {\mathrm e}^{-\frac {2 \left (2 x^{4}-2 x^{3}\right )}{\left (x^{3}-x^{2}\right ) {\mathrm e}^{4}+6 x^{3}-6 x^{2}-4}}}{x^{3} {\mathrm e}^{4}-x^{2} {\mathrm e}^{4}+6 x^{3}-6 x^{2}-4}\) | \(92\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 50, normalized size = 1.61 \begin {gather*} -x e^{\left (-\frac {16 \, x}{x^{3} {\left (e^{8} + 12 \, e^{4} + 36\right )} - x^{2} {\left (e^{8} + 12 \, e^{4} + 36\right )} - 4 \, e^{4} - 24} - \frac {4 \, x}{e^{4} + 6}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.96, size = 44, normalized size = 1.42 \begin {gather*} -x\,{\mathrm {e}}^{-\frac {4\,x^3-4\,x^4}{x^2\,{\mathrm {e}}^4-x^3\,{\mathrm {e}}^4+6\,x^2-6\,x^3+4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________